Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

agriconnect / pandas   python

Repository URL to install this package:

Version: 0.24.2 

/ tests / indexes / datetimes / test_misc.py

import calendar
import locale
import unicodedata

import numpy as np
import pytest

import pandas as pd
from pandas import (
    DatetimeIndex, Index, Timestamp, compat, date_range, datetime, offsets)
import pandas.util.testing as tm


class TestTimeSeries(object):

    def test_pass_datetimeindex_to_index(self):
        # Bugs in #1396
        rng = date_range('1/1/2000', '3/1/2000')
        idx = Index(rng, dtype=object)

        expected = Index(rng.to_pydatetime(), dtype=object)

        tm.assert_numpy_array_equal(idx.values, expected.values)

    def test_range_edges(self):
        # GH#13672
        idx = pd.date_range(start=Timestamp('1970-01-01 00:00:00.000000001'),
                            end=Timestamp('1970-01-01 00:00:00.000000004'),
                            freq='N')
        exp = DatetimeIndex(['1970-01-01 00:00:00.000000001',
                             '1970-01-01 00:00:00.000000002',
                             '1970-01-01 00:00:00.000000003',
                             '1970-01-01 00:00:00.000000004'])
        tm.assert_index_equal(idx, exp)

        idx = pd.date_range(start=Timestamp('1970-01-01 00:00:00.000000004'),
                            end=Timestamp('1970-01-01 00:00:00.000000001'),
                            freq='N')
        exp = DatetimeIndex([])
        tm.assert_index_equal(idx, exp)

        idx = pd.date_range(start=Timestamp('1970-01-01 00:00:00.000000001'),
                            end=Timestamp('1970-01-01 00:00:00.000000001'),
                            freq='N')
        exp = DatetimeIndex(['1970-01-01 00:00:00.000000001'])
        tm.assert_index_equal(idx, exp)

        idx = pd.date_range(start=Timestamp('1970-01-01 00:00:00.000001'),
                            end=Timestamp('1970-01-01 00:00:00.000004'),
                            freq='U')
        exp = DatetimeIndex(['1970-01-01 00:00:00.000001',
                             '1970-01-01 00:00:00.000002',
                             '1970-01-01 00:00:00.000003',
                             '1970-01-01 00:00:00.000004'])
        tm.assert_index_equal(idx, exp)

        idx = pd.date_range(start=Timestamp('1970-01-01 00:00:00.001'),
                            end=Timestamp('1970-01-01 00:00:00.004'),
                            freq='L')
        exp = DatetimeIndex(['1970-01-01 00:00:00.001',
                             '1970-01-01 00:00:00.002',
                             '1970-01-01 00:00:00.003',
                             '1970-01-01 00:00:00.004'])
        tm.assert_index_equal(idx, exp)

        idx = pd.date_range(start=Timestamp('1970-01-01 00:00:01'),
                            end=Timestamp('1970-01-01 00:00:04'), freq='S')
        exp = DatetimeIndex(['1970-01-01 00:00:01', '1970-01-01 00:00:02',
                             '1970-01-01 00:00:03', '1970-01-01 00:00:04'])
        tm.assert_index_equal(idx, exp)

        idx = pd.date_range(start=Timestamp('1970-01-01 00:01'),
                            end=Timestamp('1970-01-01 00:04'), freq='T')
        exp = DatetimeIndex(['1970-01-01 00:01', '1970-01-01 00:02',
                             '1970-01-01 00:03', '1970-01-01 00:04'])
        tm.assert_index_equal(idx, exp)

        idx = pd.date_range(start=Timestamp('1970-01-01 01:00'),
                            end=Timestamp('1970-01-01 04:00'), freq='H')
        exp = DatetimeIndex(['1970-01-01 01:00', '1970-01-01 02:00',
                             '1970-01-01 03:00', '1970-01-01 04:00'])
        tm.assert_index_equal(idx, exp)

        idx = pd.date_range(start=Timestamp('1970-01-01'),
                            end=Timestamp('1970-01-04'), freq='D')
        exp = DatetimeIndex(['1970-01-01', '1970-01-02',
                             '1970-01-03', '1970-01-04'])
        tm.assert_index_equal(idx, exp)


class TestDatetime64(object):

    def test_datetimeindex_accessors(self):
        dti_naive = pd.date_range(freq='D', start=datetime(1998, 1, 1),
                                  periods=365)
        # GH#13303
        dti_tz = pd.date_range(freq='D', start=datetime(1998, 1, 1),
                               periods=365, tz='US/Eastern')
        for dti in [dti_naive, dti_tz]:

            assert dti.year[0] == 1998
            assert dti.month[0] == 1
            assert dti.day[0] == 1
            assert dti.hour[0] == 0
            assert dti.minute[0] == 0
            assert dti.second[0] == 0
            assert dti.microsecond[0] == 0
            assert dti.dayofweek[0] == 3

            assert dti.dayofyear[0] == 1
            assert dti.dayofyear[120] == 121

            assert dti.weekofyear[0] == 1
            assert dti.weekofyear[120] == 18

            assert dti.quarter[0] == 1
            assert dti.quarter[120] == 2

            assert dti.days_in_month[0] == 31
            assert dti.days_in_month[90] == 30

            assert dti.is_month_start[0]
            assert not dti.is_month_start[1]
            assert dti.is_month_start[31]
            assert dti.is_quarter_start[0]
            assert dti.is_quarter_start[90]
            assert dti.is_year_start[0]
            assert not dti.is_year_start[364]
            assert not dti.is_month_end[0]
            assert dti.is_month_end[30]
            assert not dti.is_month_end[31]
            assert dti.is_month_end[364]
            assert not dti.is_quarter_end[0]
            assert not dti.is_quarter_end[30]
            assert dti.is_quarter_end[89]
            assert dti.is_quarter_end[364]
            assert not dti.is_year_end[0]
            assert dti.is_year_end[364]

            assert len(dti.year) == 365
            assert len(dti.month) == 365
            assert len(dti.day) == 365
            assert len(dti.hour) == 365
            assert len(dti.minute) == 365
            assert len(dti.second) == 365
            assert len(dti.microsecond) == 365
            assert len(dti.dayofweek) == 365
            assert len(dti.dayofyear) == 365
            assert len(dti.weekofyear) == 365
            assert len(dti.quarter) == 365
            assert len(dti.is_month_start) == 365
            assert len(dti.is_month_end) == 365
            assert len(dti.is_quarter_start) == 365
            assert len(dti.is_quarter_end) == 365
            assert len(dti.is_year_start) == 365
            assert len(dti.is_year_end) == 365
            assert len(dti.weekday_name) == 365

            dti.name = 'name'

            # non boolean accessors -> return Index
            for accessor in DatetimeIndex._field_ops:
                res = getattr(dti, accessor)
                assert len(res) == 365
                assert isinstance(res, Index)
                assert res.name == 'name'

            # boolean accessors -> return array
            for accessor in DatetimeIndex._bool_ops:
                res = getattr(dti, accessor)
                assert len(res) == 365
                assert isinstance(res, np.ndarray)

            # test boolean indexing
            res = dti[dti.is_quarter_start]
            exp = dti[[0, 90, 181, 273]]
            tm.assert_index_equal(res, exp)
            res = dti[dti.is_leap_year]
            exp = DatetimeIndex([], freq='D', tz=dti.tz, name='name')
            tm.assert_index_equal(res, exp)

        dti = pd.date_range(freq='BQ-FEB', start=datetime(1998, 1, 1),
                            periods=4)

        assert sum(dti.is_quarter_start) == 0
        assert sum(dti.is_quarter_end) == 4
        assert sum(dti.is_year_start) == 0
        assert sum(dti.is_year_end) == 1

        # Ensure is_start/end accessors throw ValueError for CustomBusinessDay,
        bday_egypt = offsets.CustomBusinessDay(weekmask='Sun Mon Tue Wed Thu')
        dti = date_range(datetime(2013, 4, 30), periods=5, freq=bday_egypt)
        pytest.raises(ValueError, lambda: dti.is_month_start)

        dti = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-03'])

        assert dti.is_month_start[0] == 1

        tests = [
            (Timestamp('2013-06-01', freq='M').is_month_start, 1),
            (Timestamp('2013-06-01', freq='BM').is_month_start, 0),
            (Timestamp('2013-06-03', freq='M').is_month_start, 0),
            (Timestamp('2013-06-03', freq='BM').is_month_start, 1),
            (Timestamp('2013-02-28', freq='Q-FEB').is_month_end, 1),
            (Timestamp('2013-02-28', freq='Q-FEB').is_quarter_end, 1),
            (Timestamp('2013-02-28', freq='Q-FEB').is_year_end, 1),
            (Timestamp('2013-03-01', freq='Q-FEB').is_month_start, 1),
            (Timestamp('2013-03-01', freq='Q-FEB').is_quarter_start, 1),
            (Timestamp('2013-03-01', freq='Q-FEB').is_year_start, 1),
            (Timestamp('2013-03-31', freq='QS-FEB').is_month_end, 1),
            (Timestamp('2013-03-31', freq='QS-FEB').is_quarter_end, 0),
            (Timestamp('2013-03-31', freq='QS-FEB').is_year_end, 0),
            (Timestamp('2013-02-01', freq='QS-FEB').is_month_start, 1),
            (Timestamp('2013-02-01', freq='QS-FEB').is_quarter_start, 1),
            (Timestamp('2013-02-01', freq='QS-FEB').is_year_start, 1),
            (Timestamp('2013-06-30', freq='BQ').is_month_end, 0),
            (Timestamp('2013-06-30', freq='BQ').is_quarter_end, 0),
            (Timestamp('2013-06-30', freq='BQ').is_year_end, 0),
            (Timestamp('2013-06-28', freq='BQ').is_month_end, 1),
            (Timestamp('2013-06-28', freq='BQ').is_quarter_end, 1),
            (Timestamp('2013-06-28', freq='BQ').is_year_end, 0),
            (Timestamp('2013-06-30', freq='BQS-APR').is_month_end, 0),
            (Timestamp('2013-06-30', freq='BQS-APR').is_quarter_end, 0),
            (Timestamp('2013-06-30', freq='BQS-APR').is_year_end, 0),
            (Timestamp('2013-06-28', freq='BQS-APR').is_month_end, 1),
            (Timestamp('2013-06-28', freq='BQS-APR').is_quarter_end, 1),
            (Timestamp('2013-03-29', freq='BQS-APR').is_year_end, 1),
            (Timestamp('2013-11-01', freq='AS-NOV').is_year_start, 1),
            (Timestamp('2013-10-31', freq='AS-NOV').is_year_end, 1),
            (Timestamp('2012-02-01').days_in_month, 29),
            (Timestamp('2013-02-01').days_in_month, 28)]

        for ts, value in tests:
            assert ts == value

        # GH 6538: Check that DatetimeIndex and its TimeStamp elements
        # return the same weekofyear accessor close to new year w/ tz
        dates = ["2013/12/29", "2013/12/30", "2013/12/31"]
        dates = DatetimeIndex(dates, tz="Europe/Brussels")
        expected = [52, 1, 1]
        assert dates.weekofyear.tolist() == expected
        assert [d.weekofyear for d in dates] == expected

    # GH 12806
    @pytest.mark.parametrize('time_locale', [
        None] if tm.get_locales() is None else [None] + tm.get_locales())
    def test_datetime_name_accessors(self, time_locale):
        # Test Monday -> Sunday and January -> December, in that sequence
        if time_locale is None:
            # If the time_locale is None, day-name and month_name should
            # return the english attributes
            expected_days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
                             'Friday', 'Saturday', 'Sunday']
            expected_months = ['January', 'February', 'March', 'April', 'May',
                               'June', 'July', 'August', 'September',
                               'October', 'November', 'December']
        else:
            with tm.set_locale(time_locale, locale.LC_TIME):
                expected_days = calendar.day_name[:]
                expected_months = calendar.month_name[1:]

        # GH#11128
        dti = pd.date_range(freq='D', start=datetime(1998, 1, 1),
                            periods=365)
        english_days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
                        'Friday', 'Saturday', 'Sunday']
        for day, name, eng_name in zip(range(4, 11),
                                       expected_days,
                                       english_days):
            name = name.capitalize()
            assert dti.weekday_name[day] == eng_name
            assert dti.day_name(locale=time_locale)[day] == name
            ts = Timestamp(datetime(2016, 4, day))
            with tm.assert_produces_warning(FutureWarning,
                                            check_stacklevel=False):
                assert ts.weekday_name == eng_name
            assert ts.day_name(locale=time_locale) == name
        dti = dti.append(DatetimeIndex([pd.NaT]))
        assert np.isnan(dti.day_name(locale=time_locale)[-1])
        ts = Timestamp(pd.NaT)
        assert np.isnan(ts.day_name(locale=time_locale))

        # GH#12805
        dti = pd.date_range(freq='M', start='2012', end='2013')
        result = dti.month_name(locale=time_locale)
        expected = Index([month.capitalize() for month in expected_months])

        # work around different normalization schemes
        # https://github.com/pandas-dev/pandas/issues/22342
        if not compat.PY2:
            result = result.str.normalize("NFD")
            expected = expected.str.normalize("NFD")

        tm.assert_index_equal(result, expected)

        for date, expected in zip(dti, expected_months):
            result = date.month_name(locale=time_locale)
            expected = expected.capitalize()

            if not compat.PY2:
                result = unicodedata.normalize("NFD", result)
                expected = unicodedata.normalize("NFD", result)

            assert result == expected
        dti = dti.append(DatetimeIndex([pd.NaT]))
        assert np.isnan(dti.month_name(locale=time_locale)[-1])

    def test_nanosecond_field(self):
        dti = DatetimeIndex(np.arange(10))

        tm.assert_index_equal(dti.nanosecond,
                              pd.Index(np.arange(10, dtype=np.int64)))