# -*- coding: utf-8 -*-
import numpy as np
import pytest
import pandas as pd
from pandas import Index, IntervalIndex, MultiIndex
from pandas.api.types import is_scalar
def test_is_monotonic_increasing():
i = MultiIndex.from_product([np.arange(10),
np.arange(10)], names=['one', 'two'])
assert i.is_monotonic is True
assert i._is_strictly_monotonic_increasing is True
assert Index(i.values).is_monotonic is True
assert i._is_strictly_monotonic_increasing is True
i = MultiIndex.from_product([np.arange(10, 0, -1),
np.arange(10)], names=['one', 'two'])
assert i.is_monotonic is False
assert i._is_strictly_monotonic_increasing is False
assert Index(i.values).is_monotonic is False
assert Index(i.values)._is_strictly_monotonic_increasing is False
i = MultiIndex.from_product([np.arange(10),
np.arange(10, 0, -1)],
names=['one', 'two'])
assert i.is_monotonic is False
assert i._is_strictly_monotonic_increasing is False
assert Index(i.values).is_monotonic is False
assert Index(i.values)._is_strictly_monotonic_increasing is False
i = MultiIndex.from_product([[1.0, np.nan, 2.0], ['a', 'b', 'c']])
assert i.is_monotonic is False
assert i._is_strictly_monotonic_increasing is False
assert Index(i.values).is_monotonic is False
assert Index(i.values)._is_strictly_monotonic_increasing is False
# string ordering
i = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'],
['one', 'two', 'three']],
codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
[0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
names=['first', 'second'])
assert i.is_monotonic is False
assert Index(i.values).is_monotonic is False
assert i._is_strictly_monotonic_increasing is False
assert Index(i.values)._is_strictly_monotonic_increasing is False
i = MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'],
['mom', 'next', 'zenith']],
codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
[0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
names=['first', 'second'])
assert i.is_monotonic is True
assert Index(i.values).is_monotonic is True
assert i._is_strictly_monotonic_increasing is True
assert Index(i.values)._is_strictly_monotonic_increasing is True
# mixed levels, hits the TypeError
i = MultiIndex(
levels=[[1, 2, 3, 4], ['gb00b03mlx29', 'lu0197800237',
'nl0000289783',
'nl0000289965', 'nl0000301109']],
codes=[[0, 1, 1, 2, 2, 2, 3], [4, 2, 0, 0, 1, 3, -1]],
names=['household_id', 'asset_id'])
assert i.is_monotonic is False
assert i._is_strictly_monotonic_increasing is False
# empty
i = MultiIndex.from_arrays([[], []])
assert i.is_monotonic is True
assert Index(i.values).is_monotonic is True
assert i._is_strictly_monotonic_increasing is True
assert Index(i.values)._is_strictly_monotonic_increasing is True
def test_is_monotonic_decreasing():
i = MultiIndex.from_product([np.arange(9, -1, -1),
np.arange(9, -1, -1)],
names=['one', 'two'])
assert i.is_monotonic_decreasing is True
assert i._is_strictly_monotonic_decreasing is True
assert Index(i.values).is_monotonic_decreasing is True
assert i._is_strictly_monotonic_decreasing is True
i = MultiIndex.from_product([np.arange(10),
np.arange(10, 0, -1)],
names=['one', 'two'])
assert i.is_monotonic_decreasing is False
assert i._is_strictly_monotonic_decreasing is False
assert Index(i.values).is_monotonic_decreasing is False
assert Index(i.values)._is_strictly_monotonic_decreasing is False
i = MultiIndex.from_product([np.arange(10, 0, -1),
np.arange(10)], names=['one', 'two'])
assert i.is_monotonic_decreasing is False
assert i._is_strictly_monotonic_decreasing is False
assert Index(i.values).is_monotonic_decreasing is False
assert Index(i.values)._is_strictly_monotonic_decreasing is False
i = MultiIndex.from_product([[2.0, np.nan, 1.0], ['c', 'b', 'a']])
assert i.is_monotonic_decreasing is False
assert i._is_strictly_monotonic_decreasing is False
assert Index(i.values).is_monotonic_decreasing is False
assert Index(i.values)._is_strictly_monotonic_decreasing is False
# string ordering
i = MultiIndex(levels=[['qux', 'foo', 'baz', 'bar'],
['three', 'two', 'one']],
codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
[0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
names=['first', 'second'])
assert i.is_monotonic_decreasing is False
assert Index(i.values).is_monotonic_decreasing is False
assert i._is_strictly_monotonic_decreasing is False
assert Index(i.values)._is_strictly_monotonic_decreasing is False
i = MultiIndex(levels=[['qux', 'foo', 'baz', 'bar'],
['zenith', 'next', 'mom']],
codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
[0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
names=['first', 'second'])
assert i.is_monotonic_decreasing is True
assert Index(i.values).is_monotonic_decreasing is True
assert i._is_strictly_monotonic_decreasing is True
assert Index(i.values)._is_strictly_monotonic_decreasing is True
# mixed levels, hits the TypeError
i = MultiIndex(
levels=[[4, 3, 2, 1], ['nl0000301109', 'nl0000289965',
'nl0000289783', 'lu0197800237',
'gb00b03mlx29']],
codes=[[0, 1, 1, 2, 2, 2, 3], [4, 2, 0, 0, 1, 3, -1]],
names=['household_id', 'asset_id'])
assert i.is_monotonic_decreasing is False
assert i._is_strictly_monotonic_decreasing is False
# empty
i = MultiIndex.from_arrays([[], []])
assert i.is_monotonic_decreasing is True
assert Index(i.values).is_monotonic_decreasing is True
assert i._is_strictly_monotonic_decreasing is True
assert Index(i.values)._is_strictly_monotonic_decreasing is True
def test_is_strictly_monotonic_increasing():
idx = pd.MultiIndex(levels=[['bar', 'baz'], ['mom', 'next']],
codes=[[0, 0, 1, 1], [0, 0, 0, 1]])
assert idx.is_monotonic_increasing is True
assert idx._is_strictly_monotonic_increasing is False
def test_is_strictly_monotonic_decreasing():
idx = pd.MultiIndex(levels=[['baz', 'bar'], ['next', 'mom']],
codes=[[0, 0, 1, 1], [0, 0, 0, 1]])
assert idx.is_monotonic_decreasing is True
assert idx._is_strictly_monotonic_decreasing is False
def test_searchsorted_monotonic(indices):
# GH17271
# not implemented for tuple searches in MultiIndex
# or Intervals searches in IntervalIndex
if isinstance(indices, (MultiIndex, IntervalIndex)):
return
# nothing to test if the index is empty
if indices.empty:
return
value = indices[0]
# determine the expected results (handle dupes for 'right')
expected_left, expected_right = 0, (indices == value).argmin()
if expected_right == 0:
# all values are the same, expected_right should be length
expected_right = len(indices)
# test _searchsorted_monotonic in all cases
# test searchsorted only for increasing
if indices.is_monotonic_increasing:
ssm_left = indices._searchsorted_monotonic(value, side='left')
assert is_scalar(ssm_left)
assert expected_left == ssm_left
ssm_right = indices._searchsorted_monotonic(value, side='right')
assert is_scalar(ssm_right)
assert expected_right == ssm_right
ss_left = indices.searchsorted(value, side='left')
assert is_scalar(ss_left)
assert expected_left == ss_left
ss_right = indices.searchsorted(value, side='right')
assert is_scalar(ss_right)
assert expected_right == ss_right
elif indices.is_monotonic_decreasing:
ssm_left = indices._searchsorted_monotonic(value, side='left')
assert is_scalar(ssm_left)
assert expected_left == ssm_left
ssm_right = indices._searchsorted_monotonic(value, side='right')
assert is_scalar(ssm_right)
assert expected_right == ssm_right
else:
# non-monotonic should raise.
with pytest.raises(ValueError):
indices._searchsorted_monotonic(value, side='left')