import numpy as np
import pytest
import pandas as pd
from pandas import PeriodIndex
import pandas.util.testing as tm
def test_to_native_types():
index = PeriodIndex(['2017-01-01', '2017-01-02',
'2017-01-03'], freq='D')
# First, with no arguments.
expected = np.array(['2017-01-01', '2017-01-02',
'2017-01-03'], dtype='=U10')
result = index.to_native_types()
tm.assert_numpy_array_equal(result, expected)
# No NaN values, so na_rep has no effect
result = index.to_native_types(na_rep='pandas')
tm.assert_numpy_array_equal(result, expected)
# Make sure slicing works
expected = np.array(['2017-01-01', '2017-01-03'], dtype='=U10')
result = index.to_native_types([0, 2])
tm.assert_numpy_array_equal(result, expected)
# Make sure date formatting works
expected = np.array(['01-2017-01', '01-2017-02',
'01-2017-03'], dtype='=U10')
result = index.to_native_types(date_format='%m-%Y-%d')
tm.assert_numpy_array_equal(result, expected)
# NULL object handling should work
index = PeriodIndex(['2017-01-01', pd.NaT, '2017-01-03'], freq='D')
expected = np.array(['2017-01-01', 'NaT', '2017-01-03'], dtype=object)
result = index.to_native_types()
tm.assert_numpy_array_equal(result, expected)
expected = np.array(['2017-01-01', 'pandas',
'2017-01-03'], dtype=object)
result = index.to_native_types(na_rep='pandas')
tm.assert_numpy_array_equal(result, expected)
class TestPeriodIndexRendering(object):
def test_frame_repr(self):
df = pd.DataFrame({"A": [1, 2, 3]},
index=pd.date_range('2000', periods=3))
result = repr(df)
expected = (
' A\n'
'2000-01-01 1\n'
'2000-01-02 2\n'
'2000-01-03 3')
assert result == expected
@pytest.mark.parametrize('method', ['__repr__', '__unicode__', '__str__'])
def test_representation(self, method):
# GH#7601
idx1 = PeriodIndex([], freq='D')
idx2 = PeriodIndex(['2011-01-01'], freq='D')
idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D')
idx4 = PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'],
freq='D')
idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A')
idx6 = PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'],
freq='H')
idx7 = pd.period_range('2013Q1', periods=1, freq="Q")
idx8 = pd.period_range('2013Q1', periods=2, freq="Q")
idx9 = pd.period_range('2013Q1', periods=3, freq="Q")
idx10 = PeriodIndex(['2011-01-01', '2011-02-01'], freq='3D')
exp1 = """PeriodIndex([], dtype='period[D]', freq='D')"""
exp2 = """PeriodIndex(['2011-01-01'], dtype='period[D]', freq='D')"""
exp3 = ("PeriodIndex(['2011-01-01', '2011-01-02'], dtype='period[D]', "
"freq='D')")
exp4 = ("PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], "
"dtype='period[D]', freq='D')")
exp5 = ("PeriodIndex(['2011', '2012', '2013'], dtype='period[A-DEC]', "
"freq='A-DEC')")
exp6 = ("PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], "
"dtype='period[H]', freq='H')")
exp7 = ("PeriodIndex(['2013Q1'], dtype='period[Q-DEC]', "
"freq='Q-DEC')")
exp8 = ("PeriodIndex(['2013Q1', '2013Q2'], dtype='period[Q-DEC]', "
"freq='Q-DEC')")
exp9 = ("PeriodIndex(['2013Q1', '2013Q2', '2013Q3'], "
"dtype='period[Q-DEC]', freq='Q-DEC')")
exp10 = ("PeriodIndex(['2011-01-01', '2011-02-01'], "
"dtype='period[3D]', freq='3D')")
for idx, expected in zip([idx1, idx2, idx3, idx4, idx5,
idx6, idx7, idx8, idx9, idx10],
[exp1, exp2, exp3, exp4, exp5,
exp6, exp7, exp8, exp9, exp10]):
result = getattr(idx, method)()
assert result == expected
def test_representation_to_series(self):
# GH#10971
idx1 = PeriodIndex([], freq='D')
idx2 = PeriodIndex(['2011-01-01'], freq='D')
idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D')
idx4 = PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'],
freq='D')
idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A')
idx6 = PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'],
freq='H')
idx7 = pd.period_range('2013Q1', periods=1, freq="Q")
idx8 = pd.period_range('2013Q1', periods=2, freq="Q")
idx9 = pd.period_range('2013Q1', periods=3, freq="Q")
exp1 = """Series([], dtype: period[D])"""
exp2 = """0 2011-01-01
dtype: period[D]"""
exp3 = """0 2011-01-01
1 2011-01-02
dtype: period[D]"""
exp4 = """0 2011-01-01
1 2011-01-02
2 2011-01-03
dtype: period[D]"""
exp5 = """0 2011
1 2012
2 2013
dtype: period[A-DEC]"""
exp6 = """0 2011-01-01 09:00
1 2012-02-01 10:00
2 NaT
dtype: period[H]"""
exp7 = """0 2013Q1
dtype: period[Q-DEC]"""
exp8 = """0 2013Q1
1 2013Q2
dtype: period[Q-DEC]"""
exp9 = """0 2013Q1
1 2013Q2
2 2013Q3
dtype: period[Q-DEC]"""
for idx, expected in zip([idx1, idx2, idx3, idx4, idx5,
idx6, idx7, idx8, idx9],
[exp1, exp2, exp3, exp4, exp5,
exp6, exp7, exp8, exp9]):
result = repr(pd.Series(idx))
assert result == expected
def test_summary(self):
# GH#9116
idx1 = PeriodIndex([], freq='D')
idx2 = PeriodIndex(['2011-01-01'], freq='D')
idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D')
idx4 = PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'],
freq='D')
idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A')
idx6 = PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'],
freq='H')
idx7 = pd.period_range('2013Q1', periods=1, freq="Q")
idx8 = pd.period_range('2013Q1', periods=2, freq="Q")
idx9 = pd.period_range('2013Q1', periods=3, freq="Q")
exp1 = """PeriodIndex: 0 entries
Freq: D"""
exp2 = """PeriodIndex: 1 entries, 2011-01-01 to 2011-01-01
Freq: D"""
exp3 = """PeriodIndex: 2 entries, 2011-01-01 to 2011-01-02
Freq: D"""
exp4 = """PeriodIndex: 3 entries, 2011-01-01 to 2011-01-03
Freq: D"""
exp5 = """PeriodIndex: 3 entries, 2011 to 2013
Freq: A-DEC"""
exp6 = """PeriodIndex: 3 entries, 2011-01-01 09:00 to NaT
Freq: H"""
exp7 = """PeriodIndex: 1 entries, 2013Q1 to 2013Q1
Freq: Q-DEC"""
exp8 = """PeriodIndex: 2 entries, 2013Q1 to 2013Q2
Freq: Q-DEC"""
exp9 = """PeriodIndex: 3 entries, 2013Q1 to 2013Q3
Freq: Q-DEC"""
for idx, expected in zip([idx1, idx2, idx3, idx4, idx5,
idx6, idx7, idx8, idx9],
[exp1, exp2, exp3, exp4, exp5,
exp6, exp7, exp8, exp9]):
result = idx._summary()
assert result == expected