import numpy as np
import pytest
from pandas.compat import lrange, product as cart_product
from pandas import DataFrame, Index, MultiIndex, Series, concat, date_range
import pandas.core.common as com
from pandas.util import testing as tm
@pytest.fixture
def four_level_index_dataframe():
arr = np.array([[-0.5109, -2.3358, -0.4645, 0.05076, 0.364],
[0.4473, 1.4152, 0.2834, 1.00661, 0.1744],
[-0.6662, -0.5243, -0.358, 0.89145, 2.5838]])
index = MultiIndex(
levels=[['a', 'x'], ['b', 'q'], [10.0032, 20.0, 30.0], [3, 4, 5]],
codes=[[0, 0, 1], [0, 1, 1], [0, 1, 2], [2, 1, 0]],
names=['one', 'two', 'three', 'four'])
return DataFrame(arr, index=index, columns=list('ABCDE'))
@pytest.mark.parametrize('key, level, exp_arr, exp_index', [
('a', 'lvl0', lambda x: x[:, 0:2], Index(['bar', 'foo'], name='lvl1')),
('foo', 'lvl1', lambda x: x[:, 1:2], Index(['a'], name='lvl0'))
])
def test_xs_named_levels_axis_eq_1(key, level, exp_arr, exp_index):
# see gh-2903
arr = np.random.randn(4, 4)
index = MultiIndex(levels=[['a', 'b'], ['bar', 'foo', 'hello', 'world']],
codes=[[0, 0, 1, 1], [0, 1, 2, 3]],
names=['lvl0', 'lvl1'])
df = DataFrame(arr, columns=index)
result = df.xs(key, level=level, axis=1)
expected = DataFrame(exp_arr(arr), columns=exp_index)
tm.assert_frame_equal(result, expected)
def test_xs_values(multiindex_dataframe_random_data):
df = multiindex_dataframe_random_data
result = df.xs(('bar', 'two')).values
expected = df.values[4]
tm.assert_almost_equal(result, expected)
def test_xs_loc_equality(multiindex_dataframe_random_data):
df = multiindex_dataframe_random_data
result = df.xs(('bar', 'two'))
expected = df.loc[('bar', 'two')]
tm.assert_series_equal(result, expected)
def test_xs_missing_values_in_index():
# see gh-6574
# missing values in returned index should be preserrved
acc = [
('a', 'abcde', 1),
('b', 'bbcde', 2),
('y', 'yzcde', 25),
('z', 'xbcde', 24),
('z', None, 26),
('z', 'zbcde', 25),
('z', 'ybcde', 26),
]
df = DataFrame(acc,
columns=['a1', 'a2', 'cnt']).set_index(['a1', 'a2'])
expected = DataFrame({'cnt': [24, 26, 25, 26]}, index=Index(
['xbcde', np.nan, 'zbcde', 'ybcde'], name='a2'))
result = df.xs('z', level='a1')
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize('key, level', [
('one', 'second'),
(['one'], ['second'])
])
def test_xs_with_duplicates(key, level, multiindex_dataframe_random_data):
# see gh-13719
frame = multiindex_dataframe_random_data
df = concat([frame] * 2)
assert df.index.is_unique is False
expected = concat([frame.xs('one', level='second')] * 2)
result = df.xs(key, level=level)
tm.assert_frame_equal(result, expected)
def test_xs_level(multiindex_dataframe_random_data):
df = multiindex_dataframe_random_data
result = df.xs('two', level='second')
expected = df[df.index.get_level_values(1) == 'two']
expected.index = Index(['foo', 'bar', 'baz', 'qux'], name='first')
tm.assert_frame_equal(result, expected)
def test_xs_level_eq_2():
arr = np.random.randn(3, 5)
index = MultiIndex(
levels=[['a', 'p', 'x'], ['b', 'q', 'y'], ['c', 'r', 'z']],
codes=[[2, 0, 1], [2, 0, 1], [2, 0, 1]])
df = DataFrame(arr, index=index)
expected = DataFrame(arr[1:2], index=[['a'], ['b']])
result = df.xs('c', level=2)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize('indexer', [
lambda df: df.xs(('a', 4), level=['one', 'four']),
lambda df: df.xs('a').xs(4, level='four')
])
def test_xs_level_multiple(indexer, four_level_index_dataframe):
df = four_level_index_dataframe
expected_values = [[0.4473, 1.4152, 0.2834, 1.00661, 0.1744]]
expected_index = MultiIndex(
levels=[['q'], [20.0]],
codes=[[0], [0]],
names=['two', 'three'])
expected = DataFrame(
expected_values, index=expected_index, columns=list('ABCDE'))
result = indexer(df)
tm.assert_frame_equal(result, expected)
def test_xs_setting_with_copy_error(multiindex_dataframe_random_data):
# this is a copy in 0.14
df = multiindex_dataframe_random_data
result = df.xs('two', level='second')
# setting this will give a SettingWithCopyError
# as we are trying to write a view
msg = 'A value is trying to be set on a copy of a slice from a DataFrame'
with pytest.raises(com.SettingWithCopyError, match=msg):
result[:] = 10
def test_xs_setting_with_copy_error_multiple(four_level_index_dataframe):
# this is a copy in 0.14
df = four_level_index_dataframe
result = df.xs(('a', 4), level=['one', 'four'])
# setting this will give a SettingWithCopyError
# as we are trying to write a view
msg = 'A value is trying to be set on a copy of a slice from a DataFrame'
with pytest.raises(com.SettingWithCopyError, match=msg):
result[:] = 10
def test_xs_integer_key():
# see gh-2107
dates = lrange(20111201, 20111205)
ids = 'abcde'
index = MultiIndex.from_tuples(
[x for x in cart_product(dates, ids)],
names=['date', 'secid'])
df = DataFrame(
np.random.randn(len(index), 3), index, ['X', 'Y', 'Z'])
result = df.xs(20111201, level='date')
expected = df.loc[20111201, :]
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize('indexer', [
lambda df: df.xs('a', level=0),
lambda df: df.xs('a')
])
def test_xs_level0(indexer, four_level_index_dataframe):
df = four_level_index_dataframe
expected_values = [[-0.5109, -2.3358, -0.4645, 0.05076, 0.364],
[0.4473, 1.4152, 0.2834, 1.00661, 0.1744]]
expected_index = MultiIndex(
levels=[['b', 'q'], [10.0032, 20.0], [4, 5]],
codes=[[0, 1], [0, 1], [1, 0]],
names=['two', 'three', 'four'])
expected = DataFrame(
expected_values, index=expected_index, columns=list('ABCDE'))
result = indexer(df)
tm.assert_frame_equal(result, expected)
def test_xs_level_series(multiindex_dataframe_random_data):
# this test is not explicitly testing .xs functionality
# TODO: move to another module or refactor
df = multiindex_dataframe_random_data
s = df['A']
result = s[:, 'two']
expected = df.xs('two', level=1)['A']
tm.assert_series_equal(result, expected)
def test_xs_level_series_ymd(multiindex_year_month_day_dataframe_random_data):
# this test is not explicitly testing .xs functionality
# TODO: move to another module or refactor
df = multiindex_year_month_day_dataframe_random_data
s = df['A']
result = s[2000, 5]
expected = df.loc[2000, 5]['A']
tm.assert_series_equal(result, expected)
def test_xs_level_series_slice_not_implemented(
multiindex_year_month_day_dataframe_random_data):
# this test is not explicitly testing .xs functionality
# TODO: move to another module or refactor
# not implementing this for now
df = multiindex_year_month_day_dataframe_random_data
s = df['A']
msg = r'\(2000, slice\(3, 4, None\)\)'
with pytest.raises(TypeError, match=msg):
s[2000, 3:4]
def test_series_getitem_multiindex_xs():
# GH6258
dt = list(date_range('20130903', periods=3))
idx = MultiIndex.from_product([list('AB'), dt])
s = Series([1, 3, 4, 1, 3, 4], index=idx)
expected = Series([1, 1], index=list('AB'))
result = s.xs('20130903', level=1)
tm.assert_series_equal(result, expected)
def test_series_getitem_multiindex_xs_by_label():
# GH5684
idx = MultiIndex.from_tuples([('a', 'one'), ('a', 'two'), ('b', 'one'),
('b', 'two')])
s = Series([1, 2, 3, 4], index=idx)
s.index.set_names(['L1', 'L2'], inplace=True)
expected = Series([1, 3], index=['a', 'b'])
expected.index.set_names(['L1'], inplace=True)
result = s.xs('one', level='L2')
tm.assert_series_equal(result, expected)