Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

agriconnect / pandas   python

Repository URL to install this package:

Version: 0.24.2 

/ tests / indexing / test_timedelta.py

import numpy as np
import pytest

import pandas as pd
from pandas.util import testing as tm


class TestTimedeltaIndexing(object):
    def test_boolean_indexing(self):
        # GH 14946
        df = pd.DataFrame({'x': range(10)})
        df.index = pd.to_timedelta(range(10), unit='s')
        conditions = [df['x'] > 3, df['x'] == 3, df['x'] < 3]
        expected_data = [[0, 1, 2, 3, 10, 10, 10, 10, 10, 10],
                         [0, 1, 2, 10, 4, 5, 6, 7, 8, 9],
                         [10, 10, 10, 3, 4, 5, 6, 7, 8, 9]]
        for cond, data in zip(conditions, expected_data):
            result = df.assign(x=df.mask(cond, 10).astype('int64'))
            expected = pd.DataFrame(data,
                                    index=pd.to_timedelta(range(10), unit='s'),
                                    columns=['x'],
                                    dtype='int64')
            tm.assert_frame_equal(expected, result)

    @pytest.mark.parametrize(
        "indexer, expected",
        [(0, [20, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
         (slice(4, 8), [0, 1, 2, 3, 20, 20, 20, 20, 8, 9]),
         ([3, 5], [0, 1, 2, 20, 4, 20, 6, 7, 8, 9])])
    def test_list_like_indexing(self, indexer, expected):
        # GH 16637
        df = pd.DataFrame({'x': range(10)}, dtype="int64")
        df.index = pd.to_timedelta(range(10), unit='s')

        df.loc[df.index[indexer], 'x'] = 20

        expected = pd.DataFrame(expected,
                                index=pd.to_timedelta(range(10), unit='s'),
                                columns=['x'],
                                dtype="int64")

        tm.assert_frame_equal(expected, df)

    def test_string_indexing(self):
        # GH 16896
        df = pd.DataFrame({'x': range(3)},
                          index=pd.to_timedelta(range(3), unit='days'))
        expected = df.iloc[0]
        sliced = df.loc['0 days']
        tm.assert_series_equal(sliced, expected)

    @pytest.mark.parametrize(
        "value",
        [None, pd.NaT, np.nan])
    def test_masked_setitem(self, value):
        # issue (#18586)
        series = pd.Series([0, 1, 2], dtype='timedelta64[ns]')
        series[series == series[0]] = value
        expected = pd.Series([pd.NaT, 1, 2], dtype='timedelta64[ns]')
        tm.assert_series_equal(series, expected)

    @pytest.mark.parametrize(
        "value",
        [None, pd.NaT, np.nan])
    def test_listlike_setitem(self, value):
        # issue (#18586)
        series = pd.Series([0, 1, 2], dtype='timedelta64[ns]')
        series.iloc[0] = value
        expected = pd.Series([pd.NaT, 1, 2], dtype='timedelta64[ns]')
        tm.assert_series_equal(series, expected)

    @pytest.mark.parametrize('start,stop, expected_slice', [
        [np.timedelta64(0, 'ns'), None, slice(0, 11)],
        [np.timedelta64(1, 'D'), np.timedelta64(6, 'D'), slice(1, 7)],
        [None, np.timedelta64(4, 'D'), slice(0, 5)]])
    def test_numpy_timedelta_scalar_indexing(self, start, stop,
                                             expected_slice):
        # GH 20393
        s = pd.Series(range(11), pd.timedelta_range('0 days', '10 days'))
        result = s.loc[slice(start, stop)]
        expected = s.iloc[expected_slice]
        tm.assert_series_equal(result, expected)

    def test_roundtrip_thru_setitem(self):
        # PR 23462
        dt1 = pd.Timedelta(0)
        dt2 = pd.Timedelta(28767471428571405)
        df = pd.DataFrame({'dt': pd.Series([dt1, dt2])})
        df_copy = df.copy()
        s = pd.Series([dt1])

        expected = df['dt'].iloc[1].value
        df.loc[[True, False]] = s
        result = df['dt'].iloc[1].value

        assert expected == result
        tm.assert_frame_equal(df, df_copy)