Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

agriconnect / pandas   python

Repository URL to install this package:

Version: 0.24.2 

/ tests / io / test_html.py

from __future__ import print_function

from functools import partial
import os
import re
import threading

import numpy as np
from numpy.random import rand
import pytest

from pandas.compat import (
    PY3, BytesIO, StringIO, is_platform_windows, map, reload, zip)
from pandas.errors import ParserError
import pandas.util._test_decorators as td

from pandas import (
    DataFrame, Index, MultiIndex, Series, Timestamp, date_range, read_csv)
import pandas.util.testing as tm
from pandas.util.testing import makeCustomDataframe as mkdf, network

from pandas.io.common import URLError, file_path_to_url
import pandas.io.html
from pandas.io.html import read_html

HERE = os.path.dirname(__file__)


@pytest.fixture(params=[
    'chinese_utf-16.html',
    'chinese_utf-32.html',
    'chinese_utf-8.html',
    'letz_latin1.html',
])
def html_encoding_file(request, datapath):
    """Parametrized fixture for HTML encoding test filenames."""
    return datapath('io', 'data', 'html_encoding', request.param)


def assert_framelist_equal(list1, list2, *args, **kwargs):
    assert len(list1) == len(list2), ('lists are not of equal size '
                                      'len(list1) == {0}, '
                                      'len(list2) == {1}'.format(len(list1),
                                                                 len(list2)))
    msg = 'not all list elements are DataFrames'
    both_frames = all(map(lambda x, y: isinstance(x, DataFrame) and
                          isinstance(y, DataFrame), list1, list2))
    assert both_frames, msg
    for frame_i, frame_j in zip(list1, list2):
        tm.assert_frame_equal(frame_i, frame_j, *args, **kwargs)
        assert not frame_i.empty, 'frames are both empty'


@td.skip_if_no('bs4')
def test_bs4_version_fails(monkeypatch, datapath):
    import bs4
    monkeypatch.setattr(bs4, '__version__', '4.2')
    with pytest.raises(ValueError, match="minimum version"):
        read_html(datapath("io", "data", "spam.html"), flavor='bs4')


def test_invalid_flavor():
    url = "google.com"
    flavor = "invalid flavor"
    msg = r"\{" + flavor + r"\} is not a valid set of flavors"

    with pytest.raises(ValueError, match=msg):
        read_html(url, "google", flavor=flavor)


@td.skip_if_no('bs4')
@td.skip_if_no('lxml')
def test_same_ordering(datapath):
    filename = datapath('io', 'data', 'valid_markup.html')
    dfs_lxml = read_html(filename, index_col=0, flavor=['lxml'])
    dfs_bs4 = read_html(filename, index_col=0, flavor=['bs4'])
    assert_framelist_equal(dfs_lxml, dfs_bs4)


@pytest.mark.parametrize("flavor", [
    pytest.param('bs4', marks=pytest.mark.skipif(
        not td.safe_import('lxml'), reason='No bs4')),
    pytest.param('lxml', marks=pytest.mark.skipif(
        not td.safe_import('lxml'), reason='No lxml'))], scope="class")
class TestReadHtml(object):

    @pytest.fixture(autouse=True)
    def set_files(self, datapath):
        self.spam_data = datapath('io', 'data', 'spam.html')
        self.spam_data_kwargs = {}
        if PY3:
            self.spam_data_kwargs['encoding'] = 'UTF-8'
        self.banklist_data = datapath("io", "data", "banklist.html")

    @pytest.fixture(autouse=True, scope="function")
    def set_defaults(self, flavor, request):
        self.read_html = partial(read_html, flavor=flavor)
        yield

    def test_to_html_compat(self):
        df = mkdf(4, 3, data_gen_f=lambda *args: rand(), c_idx_names=False,
                  r_idx_names=False).applymap('{0:.3f}'.format).astype(float)
        out = df.to_html()
        res = self.read_html(out, attrs={'class': 'dataframe'}, index_col=0)[0]
        tm.assert_frame_equal(res, df)

    @network
    def test_banklist_url(self):
        url = 'http://www.fdic.gov/bank/individual/failed/banklist.html'
        df1 = self.read_html(url, 'First Federal Bank of Florida',
                             attrs={"id": 'table'})
        df2 = self.read_html(url, 'Metcalf Bank', attrs={'id': 'table'})

        assert_framelist_equal(df1, df2)

    @network
    def test_spam_url(self):
        url = ('http://ndb.nal.usda.gov/ndb/foods/show/300772?fg=&man=&'
               'lfacet=&format=&count=&max=25&offset=&sort=&qlookup=spam')
        df1 = self.read_html(url, '.*Water.*')
        df2 = self.read_html(url, 'Unit')

        assert_framelist_equal(df1, df2)

    @pytest.mark.slow
    def test_banklist(self):
        df1 = self.read_html(self.banklist_data, '.*Florida.*',
                             attrs={'id': 'table'})
        df2 = self.read_html(self.banklist_data, 'Metcalf Bank',
                             attrs={'id': 'table'})

        assert_framelist_equal(df1, df2)

    def test_spam(self):
        df1 = self.read_html(self.spam_data, '.*Water.*')
        df2 = self.read_html(self.spam_data, 'Unit')
        assert_framelist_equal(df1, df2)

        assert df1[0].iloc[0, 0] == 'Proximates'
        assert df1[0].columns[0] == 'Nutrient'

    def test_spam_no_match(self):
        dfs = self.read_html(self.spam_data)
        for df in dfs:
            assert isinstance(df, DataFrame)

    def test_banklist_no_match(self):
        dfs = self.read_html(self.banklist_data, attrs={'id': 'table'})
        for df in dfs:
            assert isinstance(df, DataFrame)

    def test_spam_header(self):
        df = self.read_html(self.spam_data, '.*Water.*', header=2)[0]
        assert df.columns[0] == 'Proximates'
        assert not df.empty

    def test_skiprows_int(self):
        df1 = self.read_html(self.spam_data, '.*Water.*', skiprows=1)
        df2 = self.read_html(self.spam_data, 'Unit', skiprows=1)

        assert_framelist_equal(df1, df2)

    def test_skiprows_xrange(self):
        df1 = self.read_html(self.spam_data, '.*Water.*', skiprows=range(2))[0]
        df2 = self.read_html(self.spam_data, 'Unit', skiprows=range(2))[0]
        tm.assert_frame_equal(df1, df2)

    def test_skiprows_list(self):
        df1 = self.read_html(self.spam_data, '.*Water.*', skiprows=[1, 2])
        df2 = self.read_html(self.spam_data, 'Unit', skiprows=[2, 1])

        assert_framelist_equal(df1, df2)

    def test_skiprows_set(self):
        df1 = self.read_html(self.spam_data, '.*Water.*', skiprows={1, 2})
        df2 = self.read_html(self.spam_data, 'Unit', skiprows={2, 1})

        assert_framelist_equal(df1, df2)

    def test_skiprows_slice(self):
        df1 = self.read_html(self.spam_data, '.*Water.*', skiprows=1)
        df2 = self.read_html(self.spam_data, 'Unit', skiprows=1)

        assert_framelist_equal(df1, df2)

    def test_skiprows_slice_short(self):
        df1 = self.read_html(self.spam_data, '.*Water.*', skiprows=slice(2))
        df2 = self.read_html(self.spam_data, 'Unit', skiprows=slice(2))

        assert_framelist_equal(df1, df2)

    def test_skiprows_slice_long(self):
        df1 = self.read_html(self.spam_data, '.*Water.*', skiprows=slice(2, 5))
        df2 = self.read_html(self.spam_data, 'Unit', skiprows=slice(4, 1, -1))

        assert_framelist_equal(df1, df2)

    def test_skiprows_ndarray(self):
        df1 = self.read_html(self.spam_data, '.*Water.*',
                             skiprows=np.arange(2))
        df2 = self.read_html(self.spam_data, 'Unit', skiprows=np.arange(2))

        assert_framelist_equal(df1, df2)

    def test_skiprows_invalid(self):
        with pytest.raises(TypeError, match=('is not a valid type '
                                             'for skipping rows')):
            self.read_html(self.spam_data, '.*Water.*', skiprows='asdf')

    def test_index(self):
        df1 = self.read_html(self.spam_data, '.*Water.*', index_col=0)
        df2 = self.read_html(self.spam_data, 'Unit', index_col=0)
        assert_framelist_equal(df1, df2)

    def test_header_and_index_no_types(self):
        df1 = self.read_html(self.spam_data, '.*Water.*', header=1,
                             index_col=0)
        df2 = self.read_html(self.spam_data, 'Unit', header=1, index_col=0)
        assert_framelist_equal(df1, df2)

    def test_header_and_index_with_types(self):
        df1 = self.read_html(self.spam_data, '.*Water.*', header=1,
                             index_col=0)
        df2 = self.read_html(self.spam_data, 'Unit', header=1, index_col=0)
        assert_framelist_equal(df1, df2)

    def test_infer_types(self):

        # 10892 infer_types removed
        df1 = self.read_html(self.spam_data, '.*Water.*', index_col=0)
        df2 = self.read_html(self.spam_data, 'Unit', index_col=0)
        assert_framelist_equal(df1, df2)

    def test_string_io(self):
        with open(self.spam_data, **self.spam_data_kwargs) as f:
            data1 = StringIO(f.read())

        with open(self.spam_data, **self.spam_data_kwargs) as f:
            data2 = StringIO(f.read())

        df1 = self.read_html(data1, '.*Water.*')
        df2 = self.read_html(data2, 'Unit')
        assert_framelist_equal(df1, df2)

    def test_string(self):
        with open(self.spam_data, **self.spam_data_kwargs) as f:
            data = f.read()

        df1 = self.read_html(data, '.*Water.*')
        df2 = self.read_html(data, 'Unit')

        assert_framelist_equal(df1, df2)

    def test_file_like(self):
        with open(self.spam_data, **self.spam_data_kwargs) as f:
            df1 = self.read_html(f, '.*Water.*')

        with open(self.spam_data, **self.spam_data_kwargs) as f:
            df2 = self.read_html(f, 'Unit')

        assert_framelist_equal(df1, df2)

    @network
    def test_bad_url_protocol(self):
        with pytest.raises(URLError):
            self.read_html('git://github.com', match='.*Water.*')

    @network
    def test_invalid_url(self):
        try:
            with pytest.raises(URLError):
                self.read_html('http://www.a23950sdfa908sd.com',
                               match='.*Water.*')
        except ValueError as e:
            assert 'No tables found' in str(e)

    @pytest.mark.slow
    def test_file_url(self):
        url = self.banklist_data
        dfs = self.read_html(file_path_to_url(os.path.abspath(url)),
                             'First',
                             attrs={'id': 'table'})
        assert isinstance(dfs, list)
        for df in dfs:
            assert isinstance(df, DataFrame)

    @pytest.mark.slow
    def test_invalid_table_attrs(self):
        url = self.banklist_data
        with pytest.raises(ValueError, match='No tables found'):
            self.read_html(url, 'First Federal Bank of Florida',
                           attrs={'id': 'tasdfable'})

    def _bank_data(self, *args, **kwargs):
        return self.read_html(self.banklist_data, 'Metcalf',
                              attrs={'id': 'table'}, *args, **kwargs)

    @pytest.mark.slow
    def test_multiindex_header(self):
        df = self._bank_data(header=[0, 1])[0]
        assert isinstance(df.columns, MultiIndex)

    @pytest.mark.slow
    def test_multiindex_index(self):
        df = self._bank_data(index_col=[0, 1])[0]
        assert isinstance(df.index, MultiIndex)

    @pytest.mark.slow
    def test_multiindex_header_index(self):
        df = self._bank_data(header=[0, 1], index_col=[0, 1])[0]
        assert isinstance(df.columns, MultiIndex)
        assert isinstance(df.index, MultiIndex)

    @pytest.mark.slow
    def test_multiindex_header_skiprows_tuples(self):
        with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
            df = self._bank_data(header=[0, 1], skiprows=1,
                                 tupleize_cols=True)[0]
            assert isinstance(df.columns, Index)

    @pytest.mark.slow
    def test_multiindex_header_skiprows(self):
        df = self._bank_data(header=[0, 1], skiprows=1)[0]
        assert isinstance(df.columns, MultiIndex)

    @pytest.mark.slow
    def test_multiindex_header_index_skiprows(self):
        df = self._bank_data(header=[0, 1], index_col=[0, 1], skiprows=1)[0]
        assert isinstance(df.index, MultiIndex)
        assert isinstance(df.columns, MultiIndex)

    @pytest.mark.slow
    def test_regex_idempotency(self):
        url = self.banklist_data
        dfs = self.read_html(file_path_to_url(os.path.abspath(url)),
                             match=re.compile(re.compile('Florida')),
                             attrs={'id': 'table'})
        assert isinstance(dfs, list)
        for df in dfs:
            assert isinstance(df, DataFrame)

    def test_negative_skiprows(self):
        msg = r'\(you passed a negative value\)'
        with pytest.raises(ValueError, match=msg):
            self.read_html(self.spam_data, 'Water', skiprows=-1)

    @network
    def test_multiple_matches(self):
        url = 'https://docs.python.org/2/'
        dfs = self.read_html(url, match='Python')
        assert len(dfs) > 1

    @network
    def test_python_docs_table(self):
        url = 'https://docs.python.org/2/'
        dfs = self.read_html(url, match='Python')
        zz = [df.iloc[0, 0][0:4] for df in dfs]
        assert sorted(zz) == sorted(['Repo', 'What'])

    @pytest.mark.slow
    def test_thousands_macau_stats(self, datapath):
        all_non_nan_table_index = -2
        macau_data = datapath("io", "data", "macau.html")
        dfs = self.read_html(macau_data, index_col=0,
                             attrs={'class': 'style1'})
        df = dfs[all_non_nan_table_index]

        assert not any(s.isna().any() for _, s in df.iteritems())

    @pytest.mark.slow
    def test_thousands_macau_index_col(self, datapath):
        all_non_nan_table_index = -2
        macau_data = datapath('io', 'data', 'macau.html')
        dfs = self.read_html(macau_data, index_col=0, header=0)
        df = dfs[all_non_nan_table_index]

        assert not any(s.isna().any() for _, s in df.iteritems())

    def test_empty_tables(self):
        """
        Make sure that read_html ignores empty tables.
        """
        result = self.read_html('''
            <table>
                <thead>
                    <tr>
                        <th>A</th>
                        <th>B</th>
                    </tr>
                </thead>
                <tbody>
                    <tr>
                        <td>1</td>
                        <td>2</td>
                    </tr>
                </tbody>
            </table>
            <table>
                <tbody>
                </tbody>
            </table>
        ''')

        assert len(result) == 1

    def test_multiple_tbody(self):
        # GH-20690
        # Read all tbody tags within a single table.
        result = self.read_html('''<table>
            <thead>
                <tr>
                    <th>A</th>
                    <th>B</th>
                </tr>
            </thead>
            <tbody>
                <tr>
                    <td>1</td>
                    <td>2</td>
                </tr>
            </tbody>
            <tbody>
                <tr>
                    <td>3</td>
                    <td>4</td>
                </tr>
            </tbody>
        </table>''')[0]

        expected = DataFrame(data=[[1, 2], [3, 4]], columns=['A', 'B'])

        tm.assert_frame_equal(result, expected)

    def test_header_and_one_column(self):
        """
        Don't fail with bs4 when there is a header and only one column
        as described in issue #9178
        """
        result = self.read_html('''<table>
                <thead>
                    <tr>
                        <th>Header</th>
                    </tr>
                </thead>
                <tbody>
                    <tr>
                        <td>first</td>
                    </tr>
                </tbody>
            </table>''')[0]

        expected = DataFrame(data={'Header': 'first'}, index=[0])

        tm.assert_frame_equal(result, expected)

    def test_thead_without_tr(self):
        """
        Ensure parser adds <tr> within <thead> on malformed HTML.
        """
        result = self.read_html('''<table>
            <thead>
                <tr>
                    <th>Country</th>
                    <th>Municipality</th>
                    <th>Year</th>
                </tr>
            </thead>
            <tbody>
                <tr>
                    <td>Ukraine</td>
                    <th>Odessa</th>
                    <td>1944</td>
                </tr>
            </tbody>
        </table>''')[0]

        expected = DataFrame(data=[['Ukraine', 'Odessa', 1944]],
                             columns=['Country', 'Municipality', 'Year'])

        tm.assert_frame_equal(result, expected)

    def test_tfoot_read(self):
        """
        Make sure that read_html reads tfoot, containing td or th.
        Ignores empty tfoot
        """
        data_template = '''<table>
            <thead>
                <tr>
                    <th>A</th>
                    <th>B</th>
                </tr>
            </thead>
            <tbody>
                <tr>
                    <td>bodyA</td>
                    <td>bodyB</td>
                </tr>
            </tbody>
            <tfoot>
                {footer}
            </tfoot>
        </table>'''

        expected1 = DataFrame(data=[['bodyA', 'bodyB']], columns=['A', 'B'])

        expected2 = DataFrame(data=[['bodyA', 'bodyB'], ['footA', 'footB']],
                              columns=['A', 'B'])

        data1 = data_template.format(footer="")
        data2 = data_template.format(
            footer="<tr><td>footA</td><th>footB</th></tr>")

        result1 = self.read_html(data1)[0]
        result2 = self.read_html(data2)[0]

        tm.assert_frame_equal(result1, expected1)
        tm.assert_frame_equal(result2, expected2)

    def test_parse_header_of_non_string_column(self):
        # GH5048: if header is specified explicitly, an int column should be
        # parsed as int while its header is parsed as str
        result = self.read_html('''
            <table>
                <tr>
                    <td>S</td>
                    <td>I</td>
                </tr>
                <tr>
                    <td>text</td>
                    <td>1944</td>
                </tr>
            </table>
        ''', header=0)[0]

        expected = DataFrame([['text', 1944]], columns=('S', 'I'))

        tm.assert_frame_equal(result, expected)

    def test_nyse_wsj_commas_table(self, datapath):
        data = datapath('io', 'data', 'nyse_wsj.html')
        df = self.read_html(data, index_col=0, header=0,
                            attrs={'class': 'mdcTable'})[0]

        expected = Index(['Issue(Roll over for charts and headlines)',
                          'Volume', 'Price', 'Chg', '% Chg'])
        nrows = 100
        assert df.shape[0] == nrows
        tm.assert_index_equal(df.columns, expected)

    @pytest.mark.slow
    def test_banklist_header(self, datapath):
        from pandas.io.html import _remove_whitespace

        def try_remove_ws(x):
            try:
                return _remove_whitespace(x)
            except AttributeError:
                return x

        df = self.read_html(self.banklist_data, 'Metcalf',
                            attrs={'id': 'table'})[0]
        ground_truth = read_csv(datapath('io', 'data', 'banklist.csv'),
                                converters={'Updated Date': Timestamp,
                                            'Closing Date': Timestamp})
        assert df.shape == ground_truth.shape
        old = ['First Vietnamese American BankIn Vietnamese',
               'Westernbank Puerto RicoEn Espanol',
               'R-G Premier Bank of Puerto RicoEn Espanol',
               'EurobankEn Espanol', 'Sanderson State BankEn Espanol',
               'Washington Mutual Bank(Including its subsidiary Washington '
               'Mutual Bank FSB)',
               'Silver State BankEn Espanol',
               'AmTrade International BankEn Espanol',
               'Hamilton Bank, NAEn Espanol',
               'The Citizens Savings BankPioneer Community Bank, Inc.']
        new = ['First Vietnamese American Bank', 'Westernbank Puerto Rico',
               'R-G Premier Bank of Puerto Rico', 'Eurobank',
               'Sanderson State Bank', 'Washington Mutual Bank',
               'Silver State Bank', 'AmTrade International Bank',
               'Hamilton Bank, NA', 'The Citizens Savings Bank']
        dfnew = df.applymap(try_remove_ws).replace(old, new)
        gtnew = ground_truth.applymap(try_remove_ws)
        converted = dfnew._convert(datetime=True, numeric=True)
        date_cols = ['Closing Date', 'Updated Date']
        converted[date_cols] = converted[date_cols]._convert(datetime=True,
                                                             coerce=True)
        tm.assert_frame_equal(converted, gtnew)

    @pytest.mark.slow
    def test_gold_canyon(self):
        gc = 'Gold Canyon'
        with open(self.banklist_data, 'r') as f:
            raw_text = f.read()

        assert gc in raw_text
        df = self.read_html(self.banklist_data, 'Gold Canyon',
                            attrs={'id': 'table'})[0]
        assert gc in df.to_string()

    def test_different_number_of_cols(self):
        expected = self.read_html("""<table>
                        <thead>
                            <tr style="text-align: right;">
                            <th></th>
                            <th>C_l0_g0</th>
                            <th>C_l0_g1</th>
                            <th>C_l0_g2</th>
                            <th>C_l0_g3</th>
                            <th>C_l0_g4</th>
                            </tr>
                        </thead>
                        <tbody>
                            <tr>
                            <th>R_l0_g0</th>
                            <td> 0.763</td>
                            <td> 0.233</td>
                            <td> nan</td>
                            <td> nan</td>
                            <td> nan</td>
                            </tr>
                            <tr>
                            <th>R_l0_g1</th>
                            <td> 0.244</td>
                            <td> 0.285</td>
                            <td> 0.392</td>
                            <td> 0.137</td>
                            <td> 0.222</td>
                            </tr>
                        </tbody>
                    </table>""", index_col=0)[0]

        result = self.read_html("""<table>
                    <thead>
                        <tr style="text-align: right;">
                        <th></th>
                        <th>C_l0_g0</th>
                        <th>C_l0_g1</th>
                        <th>C_l0_g2</th>
                        <th>C_l0_g3</th>
                        <th>C_l0_g4</th>
                        </tr>
                    </thead>
                    <tbody>
                        <tr>
                        <th>R_l0_g0</th>
                        <td> 0.763</td>
                        <td> 0.233</td>
                        </tr>
                        <tr>
                        <th>R_l0_g1</th>
                        <td> 0.244</td>
                        <td> 0.285</td>
                        <td> 0.392</td>
                        <td> 0.137</td>
                        <td> 0.222</td>
                        </tr>
                    </tbody>
                 </table>""", index_col=0)[0]

        tm.assert_frame_equal(result, expected)

    def test_colspan_rowspan_1(self):
        # GH17054
        result = self.read_html("""
            <table>
                <tr>
                    <th>A</th>
                    <th colspan="1">B</th>
                    <th rowspan="1">C</th>
                </tr>
                <tr>
                    <td>a</td>
                    <td>b</td>
                    <td>c</td>
                </tr>
            </table>
        """)[0]

        expected = DataFrame([['a', 'b', 'c']], columns=['A', 'B', 'C'])

        tm.assert_frame_equal(result, expected)

    def test_colspan_rowspan_copy_values(self):
        # GH17054

        # In ASCII, with lowercase letters being copies:
        #
        # X x Y Z W
        # A B b z C

        result = self.read_html("""
            <table>
                <tr>
                    <td colspan="2">X</td>
                    <td>Y</td>
                    <td rowspan="2">Z</td>
                    <td>W</td>
                </tr>
                <tr>
                    <td>A</td>
                    <td colspan="2">B</td>
                    <td>C</td>
                </tr>
            </table>
        """, header=0)[0]

        expected = DataFrame(data=[['A', 'B', 'B', 'Z', 'C']],
                             columns=['X', 'X.1', 'Y', 'Z', 'W'])

        tm.assert_frame_equal(result, expected)

    def test_colspan_rowspan_both_not_1(self):
        # GH17054

        # In ASCII, with lowercase letters being copies:
        #
        # A B b b C
        # a b b b D

        result = self.read_html("""
            <table>
                <tr>
                    <td rowspan="2">A</td>
                    <td rowspan="2" colspan="3">B</td>
                    <td>C</td>
                </tr>
                <tr>
                    <td>D</td>
                </tr>
            </table>
        """, header=0)[0]

        expected = DataFrame(data=[['A', 'B', 'B', 'B', 'D']],
                             columns=['A', 'B', 'B.1', 'B.2', 'C'])

        tm.assert_frame_equal(result, expected)

    def test_rowspan_at_end_of_row(self):
        # GH17054

        # In ASCII, with lowercase letters being copies:
        #
        # A B
        # C b

        result = self.read_html("""
            <table>
                <tr>
                    <td>A</td>
                    <td rowspan="2">B</td>
                </tr>
                <tr>
                    <td>C</td>
                </tr>
            </table>
        """, header=0)[0]

        expected = DataFrame(data=[['C', 'B']], columns=['A', 'B'])

        tm.assert_frame_equal(result, expected)

    def test_rowspan_only_rows(self):
        # GH17054

        result = self.read_html("""
            <table>
                <tr>
                    <td rowspan="3">A</td>
                    <td rowspan="3">B</td>
                </tr>
            </table>
        """, header=0)[0]

        expected = DataFrame(data=[['A', 'B'], ['A', 'B']],
                             columns=['A', 'B'])

        tm.assert_frame_equal(result, expected)

    def test_header_inferred_from_rows_with_only_th(self):
        # GH17054
        result = self.read_html("""
            <table>
                <tr>
                    <th>A</th>
                    <th>B</th>
                </tr>
                <tr>
                    <th>a</th>
                    <th>b</th>
                </tr>
                <tr>
                    <td>1</td>
                    <td>2</td>
                </tr>
            </table>
        """)[0]

        columns = MultiIndex(levels=[['A', 'B'], ['a', 'b']],
                             codes=[[0, 1], [0, 1]])
        expected = DataFrame(data=[[1, 2]], columns=columns)

        tm.assert_frame_equal(result, expected)

    def test_parse_dates_list(self):
        df = DataFrame({'date': date_range('1/1/2001', periods=10)})
        expected = df.to_html()
        res = self.read_html(expected, parse_dates=[1], index_col=0)
        tm.assert_frame_equal(df, res[0])
        res = self.read_html(expected, parse_dates=['date'], index_col=0)
        tm.assert_frame_equal(df, res[0])

    def test_parse_dates_combine(self):
        raw_dates = Series(date_range('1/1/2001', periods=10))
        df = DataFrame({'date': raw_dates.map(lambda x: str(x.date())),
                        'time': raw_dates.map(lambda x: str(x.time()))})
        res = self.read_html(df.to_html(), parse_dates={'datetime': [1, 2]},
                             index_col=1)
        newdf = DataFrame({'datetime': raw_dates})
        tm.assert_frame_equal(newdf, res[0])

    def test_computer_sales_page(self, datapath):
        data = datapath('io', 'data', 'computer_sales_page.html')
        msg = (r"Passed header=\[0,1\] are too many "
               r"rows for this multi_index of columns")
        with pytest.raises(ParserError, match=msg):
            self.read_html(data, header=[0, 1])

        data = datapath('io', 'data', 'computer_sales_page.html')
        assert self.read_html(data, header=[1, 2])

    def test_wikipedia_states_table(self, datapath):
        data = datapath('io', 'data', 'wikipedia_states.html')
        assert os.path.isfile(data), '%r is not a file' % data
        assert os.path.getsize(data), '%r is an empty file' % data
        result = self.read_html(data, 'Arizona', header=1)[0]
        assert result['sq mi'].dtype == np.dtype('float64')

    def test_parser_error_on_empty_header_row(self):
        msg = (r"Passed header=\[0,1\] are too many "
               r"rows for this multi_index of columns")
        with pytest.raises(ParserError, match=msg):
            self.read_html("""
                <table>
                    <thead>
                        <tr><th></th><th></tr>
                        <tr><th>A</th><th>B</th></tr>
                    </thead>
                    <tbody>
                        <tr><td>a</td><td>b</td></tr>
                    </tbody>
                </table>
            """, header=[0, 1])

    def test_decimal_rows(self):
        # GH 12907
        result = self.read_html('''<html>
            <body>
             <table>
                <thead>
                    <tr>
                        <th>Header</th>
                    </tr>
                </thead>
                <tbody>
                    <tr>
                        <td>1100#101</td>
                    </tr>
                </tbody>
            </table>
            </body>
        </html>''', decimal='#')[0]

        expected = DataFrame(data={'Header': 1100.101}, index=[0])

        assert result['Header'].dtype == np.dtype('float64')
        tm.assert_frame_equal(result, expected)

    def test_bool_header_arg(self):
        # GH 6114
        for arg in [True, False]:
            with pytest.raises(TypeError):
                self.read_html(self.spam_data, header=arg)

    def test_converters(self):
        # GH 13461
        result = self.read_html(
            """<table>
                 <thead>
                   <tr>
                     <th>a</th>
                    </tr>
                 </thead>
                 <tbody>
                   <tr>
                     <td> 0.763</td>
                   </tr>
                   <tr>
                     <td> 0.244</td>
                   </tr>
                 </tbody>
               </table>""",
            converters={'a': str}
        )[0]

        expected = DataFrame({'a': ['0.763', '0.244']})

        tm.assert_frame_equal(result, expected)

    def test_na_values(self):
        # GH 13461
        result = self.read_html(
            """<table>
                 <thead>
                   <tr>
                     <th>a</th>
                   </tr>
                 </thead>
                 <tbody>
                   <tr>
                     <td> 0.763</td>
                   </tr>
                   <tr>
                     <td> 0.244</td>
                   </tr>
                 </tbody>
               </table>""",
            na_values=[0.244])[0]

        expected = DataFrame({'a': [0.763, np.nan]})

        tm.assert_frame_equal(result, expected)

    def test_keep_default_na(self):
        html_data = """<table>
                        <thead>
                            <tr>
                            <th>a</th>
                            </tr>
                        </thead>
                        <tbody>
                            <tr>
                            <td> N/A</td>
                            </tr>
                            <tr>
                            <td> NA</td>
                            </tr>
                        </tbody>
                    </table>"""

        expected_df = DataFrame({'a': ['N/A', 'NA']})
        html_df = self.read_html(html_data, keep_default_na=False)[0]
        tm.assert_frame_equal(expected_df, html_df)

        expected_df = DataFrame({'a': [np.nan, np.nan]})
        html_df = self.read_html(html_data, keep_default_na=True)[0]
        tm.assert_frame_equal(expected_df, html_df)

    def test_preserve_empty_rows(self):
        result = self.read_html("""
            <table>
                <tr>
                    <th>A</th>
                    <th>B</th>
                </tr>
                <tr>
                    <td>a</td>
                    <td>b</td>
                </tr>
                <tr>
                    <td></td>
                    <td></td>
                </tr>
            </table>
        """)[0]

        expected = DataFrame(data=[['a', 'b'], [np.nan, np.nan]],
                             columns=['A', 'B'])

        tm.assert_frame_equal(result, expected)

    def test_ignore_empty_rows_when_inferring_header(self):
        result = self.read_html("""
            <table>
                <thead>
                    <tr><th></th><th></tr>
                    <tr><th>A</th><th>B</th></tr>
                    <tr><th>a</th><th>b</th></tr>
                </thead>
                <tbody>
                    <tr><td>1</td><td>2</td></tr>
                </tbody>
            </table>
        """)[0]

        columns = MultiIndex(levels=[['A', 'B'], ['a', 'b']],
                             codes=[[0, 1], [0, 1]])
        expected = DataFrame(data=[[1, 2]], columns=columns)

        tm.assert_frame_equal(result, expected)

    def test_multiple_header_rows(self):
        # Issue #13434
        expected_df = DataFrame(data=[("Hillary", 68, "D"),
                                      ("Bernie", 74, "D"),
                                      ("Donald", 69, "R")])
        expected_df.columns = [["Unnamed: 0_level_0", "Age", "Party"],
                               ["Name", "Unnamed: 1_level_1",
                                "Unnamed: 2_level_1"]]
        html = expected_df.to_html(index=False)
        html_df = self.read_html(html, )[0]
        tm.assert_frame_equal(expected_df, html_df)

    def test_works_on_valid_markup(self, datapath):
        filename = datapath('io', 'data', 'valid_markup.html')
        dfs = self.read_html(filename, index_col=0)
        assert isinstance(dfs, list)
        assert isinstance(dfs[0], DataFrame)

    @pytest.mark.slow
    def test_fallback_success(self, datapath):
        banklist_data = datapath('io', 'data', 'banklist.html')
        self.read_html(banklist_data, '.*Water.*', flavor=['lxml', 'html5lib'])

    def test_to_html_timestamp(self):
        rng = date_range('2000-01-01', periods=10)
        df = DataFrame(np.random.randn(10, 4), index=rng)

        result = df.to_html()
        assert '2000-01-01' in result

    @pytest.mark.parametrize("displayed_only,exp0,exp1", [
        (True, DataFrame(["foo"]), None),
        (False, DataFrame(["foo  bar  baz  qux"]), DataFrame(["foo"]))])
    def test_displayed_only(self, displayed_only, exp0, exp1):
        # GH 20027
        data = StringIO("""<html>
          <body>
            <table>
              <tr>
                <td>
                  foo
                  <span style="display:none;text-align:center">bar</span>
                  <span style="display:none">baz</span>
                  <span style="display: none">qux</span>
                </td>
              </tr>
            </table>
            <table style="display: none">
              <tr>
                <td>foo</td>
              </tr>
            </table>
          </body>
        </html>""")

        dfs = self.read_html(data, displayed_only=displayed_only)
        tm.assert_frame_equal(dfs[0], exp0)

        if exp1 is not None:
            tm.assert_frame_equal(dfs[1], exp1)
        else:
            assert len(dfs) == 1  # Should not parse hidden table

    def test_encode(self, html_encoding_file):
        _, encoding = os.path.splitext(
            os.path.basename(html_encoding_file)
        )[0].split('_')

        try:
            with open(html_encoding_file, 'rb') as fobj:
                from_string = self.read_html(fobj.read(), encoding=encoding,
                                             index_col=0).pop()

            with open(html_encoding_file, 'rb') as fobj:
                from_file_like = self.read_html(BytesIO(fobj.read()),
                                                encoding=encoding,
                                                index_col=0).pop()

            from_filename = self.read_html(html_encoding_file,
                                           encoding=encoding,
                                           index_col=0).pop()
            tm.assert_frame_equal(from_string, from_file_like)
            tm.assert_frame_equal(from_string, from_filename)
        except Exception:
            # seems utf-16/32 fail on windows
            if is_platform_windows():
                if '16' in encoding or '32' in encoding:
                    pytest.skip()
                raise

    def test_parse_failure_unseekable(self):
        # Issue #17975

        if self.read_html.keywords.get('flavor') == 'lxml':
            pytest.skip("Not applicable for lxml")

        class UnseekableStringIO(StringIO):
            def seekable(self):
                return False

        bad = UnseekableStringIO('''
            <table><tr><td>spam<foobr />eggs</td></tr></table>''')

        assert self.read_html(bad)

        with pytest.raises(ValueError,
                           match='passed a non-rewindable file object'):
            self.read_html(bad)

    def test_parse_failure_rewinds(self):
        # Issue #17975

        class MockFile(object):
            def __init__(self, data):
                self.data = data
                self.at_end = False

            def read(self, size=None):
                data = '' if self.at_end else self.data
                self.at_end = True
                return data

            def seek(self, offset):
                self.at_end = False

            def seekable(self):
                return True

        good = MockFile('<table><tr><td>spam<br />eggs</td></tr></table>')
        bad = MockFile('<table><tr><td>spam<foobr />eggs</td></tr></table>')

        assert self.read_html(good)
        assert self.read_html(bad)

    @pytest.mark.slow
    def test_importcheck_thread_safety(self, datapath):
        # see gh-16928

        class ErrorThread(threading.Thread):
            def run(self):
                try:
                    super(ErrorThread, self).run()
                except Exception as e:
                    self.err = e
                else:
                    self.err = None

        # force import check by reinitalising global vars in html.py
        reload(pandas.io.html)

        filename = datapath('io', 'data', 'valid_markup.html')
        helper_thread1 = ErrorThread(target=self.read_html, args=(filename,))
        helper_thread2 = ErrorThread(target=self.read_html, args=(filename,))

        helper_thread1.start()
        helper_thread2.start()

        while helper_thread1.is_alive() or helper_thread2.is_alive():
            pass
        assert None is helper_thread1.err is helper_thread2.err