Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

agriconnect / pandas   python

Repository URL to install this package:

Version: 0.24.2 

/ tests / plotting / test_groupby.py

# coding: utf-8

""" Test cases for GroupBy.plot """


import numpy as np

import pandas.util._test_decorators as td

from pandas import DataFrame, Series
from pandas.tests.plotting.common import TestPlotBase
import pandas.util.testing as tm


@td.skip_if_no_mpl
class TestDataFrameGroupByPlots(TestPlotBase):

    def test_series_groupby_plotting_nominally_works(self):
        n = 10
        weight = Series(np.random.normal(166, 20, size=n))
        height = Series(np.random.normal(60, 10, size=n))
        with tm.RNGContext(42):
            gender = np.random.choice(['male', 'female'], size=n)

        weight.groupby(gender).plot()
        tm.close()
        height.groupby(gender).hist()
        tm.close()
        # Regression test for GH8733
        height.groupby(gender).plot(alpha=0.5)
        tm.close()

    def test_plotting_with_float_index_works(self):
        # GH 7025
        df = DataFrame({'def': [1, 1, 1, 2, 2, 2, 3, 3, 3],
                        'val': np.random.randn(9)},
                       index=[1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0])

        df.groupby('def')['val'].plot()
        tm.close()
        df.groupby('def')['val'].apply(lambda x: x.plot())
        tm.close()

    def test_hist_single_row(self):
        # GH10214
        bins = np.arange(80, 100 + 2, 1)
        df = DataFrame({"Name": ["AAA", "BBB"],
                        "ByCol": [1, 2],
                        "Mark": [85, 89]})
        df["Mark"].hist(by=df["ByCol"], bins=bins)
        df = DataFrame({"Name": ["AAA"], "ByCol": [1], "Mark": [85]})
        df["Mark"].hist(by=df["ByCol"], bins=bins)

    def test_plot_submethod_works(self):
        df = DataFrame({'x': [1, 2, 3, 4, 5],
                        'y': [1, 2, 3, 2, 1],
                        'z': list('ababa')})
        df.groupby('z').plot.scatter('x', 'y')
        tm.close()
        df.groupby('z')['x'].plot.line()
        tm.close()

    def test_plot_kwargs(self):

        df = DataFrame({'x': [1, 2, 3, 4, 5],
                        'y': [1, 2, 3, 2, 1],
                        'z': list('ababa')})

        res = df.groupby('z').plot(kind='scatter', x='x', y='y')
        # check that a scatter plot is effectively plotted: the axes should
        # contain a PathCollection from the scatter plot (GH11805)
        assert len(res['a'].collections) == 1

        res = df.groupby('z').plot.scatter(x='x', y='y')
        assert len(res['a'].collections) == 1