Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

agriconnect / pandas   python

Repository URL to install this package:

Version: 0.24.2 

/ tests / reshape / merge / test_join.py

# pylint: disable=E1103

from warnings import catch_warnings

import numpy as np
from numpy.random import randn
import pytest

from pandas._libs import join as libjoin
import pandas.compat as compat
from pandas.compat import lrange

import pandas as pd
from pandas import DataFrame, Index, MultiIndex, Series, concat, merge
from pandas.tests.reshape.merge.test_merge import NGROUPS, N, get_test_data
import pandas.util.testing as tm
from pandas.util.testing import assert_frame_equal

a_ = np.array


@pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning")
class TestJoin(object):

    def setup_method(self, method):
        # aggregate multiple columns
        self.df = DataFrame({'key1': get_test_data(),
                             'key2': get_test_data(),
                             'data1': np.random.randn(N),
                             'data2': np.random.randn(N)})

        # exclude a couple keys for fun
        self.df = self.df[self.df['key2'] > 1]

        self.df2 = DataFrame({'key1': get_test_data(n=N // 5),
                              'key2': get_test_data(ngroups=NGROUPS // 2,
                                                    n=N // 5),
                              'value': np.random.randn(N // 5)})

        index, data = tm.getMixedTypeDict()
        self.target = DataFrame(data, index=index)

        # Join on string value
        self.source = DataFrame({'MergedA': data['A'], 'MergedD': data['D']},
                                index=data['C'])

    def test_cython_left_outer_join(self):
        left = a_([0, 1, 2, 1, 2, 0, 0, 1, 2, 3, 3], dtype=np.int64)
        right = a_([1, 1, 0, 4, 2, 2, 1], dtype=np.int64)
        max_group = 5

        ls, rs = libjoin.left_outer_join(left, right, max_group)

        exp_ls = left.argsort(kind='mergesort')
        exp_rs = right.argsort(kind='mergesort')

        exp_li = a_([0, 1, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5,
                     6, 6, 7, 7, 8, 8, 9, 10])
        exp_ri = a_([0, 0, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3,
                     4, 5, 4, 5, 4, 5, -1, -1])

        exp_ls = exp_ls.take(exp_li)
        exp_ls[exp_li == -1] = -1

        exp_rs = exp_rs.take(exp_ri)
        exp_rs[exp_ri == -1] = -1

        tm.assert_numpy_array_equal(ls, exp_ls, check_dtype=False)
        tm.assert_numpy_array_equal(rs, exp_rs, check_dtype=False)

    def test_cython_right_outer_join(self):
        left = a_([0, 1, 2, 1, 2, 0, 0, 1, 2, 3, 3], dtype=np.int64)
        right = a_([1, 1, 0, 4, 2, 2, 1], dtype=np.int64)
        max_group = 5

        rs, ls = libjoin.left_outer_join(right, left, max_group)

        exp_ls = left.argsort(kind='mergesort')
        exp_rs = right.argsort(kind='mergesort')

        #            0        1        1        1
        exp_li = a_([0, 1, 2, 3, 4, 5, 3, 4, 5, 3, 4, 5,
                     #            2        2        4
                     6, 7, 8, 6, 7, 8, -1])
        exp_ri = a_([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3,
                     4, 4, 4, 5, 5, 5, 6])

        exp_ls = exp_ls.take(exp_li)
        exp_ls[exp_li == -1] = -1

        exp_rs = exp_rs.take(exp_ri)
        exp_rs[exp_ri == -1] = -1

        tm.assert_numpy_array_equal(ls, exp_ls, check_dtype=False)
        tm.assert_numpy_array_equal(rs, exp_rs, check_dtype=False)

    def test_cython_inner_join(self):
        left = a_([0, 1, 2, 1, 2, 0, 0, 1, 2, 3, 3], dtype=np.int64)
        right = a_([1, 1, 0, 4, 2, 2, 1, 4], dtype=np.int64)
        max_group = 5

        ls, rs = libjoin.inner_join(left, right, max_group)

        exp_ls = left.argsort(kind='mergesort')
        exp_rs = right.argsort(kind='mergesort')

        exp_li = a_([0, 1, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5,
                     6, 6, 7, 7, 8, 8])
        exp_ri = a_([0, 0, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3,
                     4, 5, 4, 5, 4, 5])

        exp_ls = exp_ls.take(exp_li)
        exp_ls[exp_li == -1] = -1

        exp_rs = exp_rs.take(exp_ri)
        exp_rs[exp_ri == -1] = -1

        tm.assert_numpy_array_equal(ls, exp_ls, check_dtype=False)
        tm.assert_numpy_array_equal(rs, exp_rs, check_dtype=False)

    def test_left_outer_join(self):
        joined_key2 = merge(self.df, self.df2, on='key2')
        _check_join(self.df, self.df2, joined_key2, ['key2'], how='left')

        joined_both = merge(self.df, self.df2)
        _check_join(self.df, self.df2, joined_both, ['key1', 'key2'],
                    how='left')

    def test_right_outer_join(self):
        joined_key2 = merge(self.df, self.df2, on='key2', how='right')
        _check_join(self.df, self.df2, joined_key2, ['key2'], how='right')

        joined_both = merge(self.df, self.df2, how='right')
        _check_join(self.df, self.df2, joined_both, ['key1', 'key2'],
                    how='right')

    def test_full_outer_join(self):
        joined_key2 = merge(self.df, self.df2, on='key2', how='outer')
        _check_join(self.df, self.df2, joined_key2, ['key2'], how='outer')

        joined_both = merge(self.df, self.df2, how='outer')
        _check_join(self.df, self.df2, joined_both, ['key1', 'key2'],
                    how='outer')

    def test_inner_join(self):
        joined_key2 = merge(self.df, self.df2, on='key2', how='inner')
        _check_join(self.df, self.df2, joined_key2, ['key2'], how='inner')

        joined_both = merge(self.df, self.df2, how='inner')
        _check_join(self.df, self.df2, joined_both, ['key1', 'key2'],
                    how='inner')

    def test_handle_overlap(self):
        joined = merge(self.df, self.df2, on='key2',
                       suffixes=['.foo', '.bar'])

        assert 'key1.foo' in joined
        assert 'key1.bar' in joined

    def test_handle_overlap_arbitrary_key(self):
        joined = merge(self.df, self.df2,
                       left_on='key2', right_on='key1',
                       suffixes=['.foo', '.bar'])
        assert 'key1.foo' in joined
        assert 'key2.bar' in joined

    def test_join_on(self):
        target = self.target
        source = self.source

        merged = target.join(source, on='C')
        tm.assert_series_equal(merged['MergedA'], target['A'],
                               check_names=False)
        tm.assert_series_equal(merged['MergedD'], target['D'],
                               check_names=False)

        # join with duplicates (fix regression from DataFrame/Matrix merge)
        df = DataFrame({'key': ['a', 'a', 'b', 'b', 'c']})
        df2 = DataFrame({'value': [0, 1, 2]}, index=['a', 'b', 'c'])
        joined = df.join(df2, on='key')
        expected = DataFrame({'key': ['a', 'a', 'b', 'b', 'c'],
                              'value': [0, 0, 1, 1, 2]})
        assert_frame_equal(joined, expected)

        # Test when some are missing
        df_a = DataFrame([[1], [2], [3]], index=['a', 'b', 'c'],
                         columns=['one'])
        df_b = DataFrame([['foo'], ['bar']], index=[1, 2],
                         columns=['two'])
        df_c = DataFrame([[1], [2]], index=[1, 2],
                         columns=['three'])
        joined = df_a.join(df_b, on='one')
        joined = joined.join(df_c, on='one')
        assert np.isnan(joined['two']['c'])
        assert np.isnan(joined['three']['c'])

        # merge column not p resent
        with pytest.raises(KeyError, match="^'E'$"):
            target.join(source, on='E')

        # overlap
        source_copy = source.copy()
        source_copy['A'] = 0
        msg = ("You are trying to merge on float64 and object columns. If"
               " you wish to proceed you should use pd.concat")
        with pytest.raises(ValueError, match=msg):
            target.join(source_copy, on='A')

    def test_join_on_fails_with_different_right_index(self):
        df = DataFrame({'a': np.random.choice(['m', 'f'], size=3),
                        'b': np.random.randn(3)})
        df2 = DataFrame({'a': np.random.choice(['m', 'f'], size=10),
                         'b': np.random.randn(10)},
                        index=tm.makeCustomIndex(10, 2))
        msg = (r'len\(left_on\) must equal the number of levels in the index'
               ' of "right"')
        with pytest.raises(ValueError, match=msg):
            merge(df, df2, left_on='a', right_index=True)

    def test_join_on_fails_with_different_left_index(self):
        df = DataFrame({'a': np.random.choice(['m', 'f'], size=3),
                        'b': np.random.randn(3)},
                       index=tm.makeCustomIndex(3, 2))
        df2 = DataFrame({'a': np.random.choice(['m', 'f'], size=10),
                         'b': np.random.randn(10)})
        msg = (r'len\(right_on\) must equal the number of levels in the index'
               ' of "left"')
        with pytest.raises(ValueError, match=msg):
            merge(df, df2, right_on='b', left_index=True)

    def test_join_on_fails_with_different_column_counts(self):
        df = DataFrame({'a': np.random.choice(['m', 'f'], size=3),
                        'b': np.random.randn(3)})
        df2 = DataFrame({'a': np.random.choice(['m', 'f'], size=10),
                         'b': np.random.randn(10)},
                        index=tm.makeCustomIndex(10, 2))
        msg = r"len\(right_on\) must equal len\(left_on\)"
        with pytest.raises(ValueError, match=msg):
            merge(df, df2, right_on='a', left_on=['a', 'b'])

    @pytest.mark.parametrize("wrong_type", [2, 'str', None, np.array([0, 1])])
    def test_join_on_fails_with_wrong_object_type(self, wrong_type):
        # GH12081 - original issue

        # GH21220 - merging of Series and DataFrame is now allowed
        # Edited test to remove the Series object from test parameters

        df = DataFrame({'a': [1, 1]})
        msg = ("Can only merge Series or DataFrame objects, a {} was passed"
               .format(str(type(wrong_type))))
        with pytest.raises(TypeError, match=msg):
            merge(wrong_type, df, left_on='a', right_on='a')
        with pytest.raises(TypeError, match=msg):
            merge(df, wrong_type, left_on='a', right_on='a')

    def test_join_on_pass_vector(self):
        expected = self.target.join(self.source, on='C')
        del expected['C']

        join_col = self.target.pop('C')
        result = self.target.join(self.source, on=join_col)
        assert_frame_equal(result, expected)

    def test_join_with_len0(self):
        # nothing to merge
        merged = self.target.join(self.source.reindex([]), on='C')
        for col in self.source:
            assert col in merged
            assert merged[col].isna().all()

        merged2 = self.target.join(self.source.reindex([]), on='C',
                                   how='inner')
        tm.assert_index_equal(merged2.columns, merged.columns)
        assert len(merged2) == 0

    def test_join_on_inner(self):
        df = DataFrame({'key': ['a', 'a', 'd', 'b', 'b', 'c']})
        df2 = DataFrame({'value': [0, 1]}, index=['a', 'b'])

        joined = df.join(df2, on='key', how='inner')

        expected = df.join(df2, on='key')
        expected = expected[expected['value'].notna()]
        tm.assert_series_equal(joined['key'], expected['key'],
                               check_dtype=False)
        tm.assert_series_equal(joined['value'], expected['value'],
                               check_dtype=False)
        tm.assert_index_equal(joined.index, expected.index)

    def test_join_on_singlekey_list(self):
        df = DataFrame({'key': ['a', 'a', 'b', 'b', 'c']})
        df2 = DataFrame({'value': [0, 1, 2]}, index=['a', 'b', 'c'])

        # corner cases
        joined = df.join(df2, on=['key'])
        expected = df.join(df2, on='key')

        assert_frame_equal(joined, expected)

    def test_join_on_series(self):
        result = self.target.join(self.source['MergedA'], on='C')
        expected = self.target.join(self.source[['MergedA']], on='C')
        assert_frame_equal(result, expected)

    def test_join_on_series_buglet(self):
        # GH #638
        df = DataFrame({'a': [1, 1]})
        ds = Series([2], index=[1], name='b')
        result = df.join(ds, on='a')
        expected = DataFrame({'a': [1, 1],
                              'b': [2, 2]}, index=df.index)
        tm.assert_frame_equal(result, expected)

    def test_join_index_mixed(self, join_type):
        # no overlapping blocks
        df1 = DataFrame(index=np.arange(10))
        df1['bool'] = True
        df1['string'] = 'foo'

        df2 = DataFrame(index=np.arange(5, 15))
        df2['int'] = 1
        df2['float'] = 1.

        joined = df1.join(df2, how=join_type)
        expected = _join_by_hand(df1, df2, how=join_type)
        assert_frame_equal(joined, expected)

        joined = df2.join(df1, how=join_type)
        expected = _join_by_hand(df2, df1, how=join_type)
        assert_frame_equal(joined, expected)

    def test_join_index_mixed_overlap(self):
        df1 = DataFrame({'A': 1., 'B': 2, 'C': 'foo', 'D': True},
                        index=np.arange(10),
                        columns=['A', 'B', 'C', 'D'])
        assert df1['B'].dtype == np.int64
        assert df1['D'].dtype == np.bool_

        df2 = DataFrame({'A': 1., 'B': 2, 'C': 'foo', 'D': True},
                        index=np.arange(0, 10, 2),
                        columns=['A', 'B', 'C', 'D'])

        # overlap
        joined = df1.join(df2, lsuffix='_one', rsuffix='_two')
        expected_columns = ['A_one', 'B_one', 'C_one', 'D_one',
Loading ...