Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

agriconnect / pandas   python

Repository URL to install this package:

Version: 0.24.2 

/ tests / series / indexing / test_alter_index.py

# coding=utf-8
# pylint: disable-msg=E1101,W0612

from datetime import datetime

import numpy as np
from numpy import nan
import pytest

import pandas.compat as compat
from pandas.compat import lrange, range

import pandas as pd
from pandas import Categorical, Series, date_range, isna
import pandas.util.testing as tm
from pandas.util.testing import assert_series_equal


@pytest.mark.parametrize(
    'first_slice,second_slice', [
        [[2, None], [None, -5]],
        [[None, 0], [None, -5]],
        [[None, -5], [None, 0]],
        [[None, 0], [None, 0]]
    ])
@pytest.mark.parametrize('fill', [None, -1])
def test_align(test_data, first_slice, second_slice, join_type, fill):
    a = test_data.ts[slice(*first_slice)]
    b = test_data.ts[slice(*second_slice)]

    aa, ab = a.align(b, join=join_type, fill_value=fill)

    join_index = a.index.join(b.index, how=join_type)
    if fill is not None:
        diff_a = aa.index.difference(join_index)
        diff_b = ab.index.difference(join_index)
        if len(diff_a) > 0:
            assert (aa.reindex(diff_a) == fill).all()
        if len(diff_b) > 0:
            assert (ab.reindex(diff_b) == fill).all()

    ea = a.reindex(join_index)
    eb = b.reindex(join_index)

    if fill is not None:
        ea = ea.fillna(fill)
        eb = eb.fillna(fill)

    assert_series_equal(aa, ea)
    assert_series_equal(ab, eb)
    assert aa.name == 'ts'
    assert ea.name == 'ts'
    assert ab.name == 'ts'
    assert eb.name == 'ts'


@pytest.mark.parametrize(
    'first_slice,second_slice', [
        [[2, None], [None, -5]],
        [[None, 0], [None, -5]],
        [[None, -5], [None, 0]],
        [[None, 0], [None, 0]]
    ])
@pytest.mark.parametrize('method', ['pad', 'bfill'])
@pytest.mark.parametrize('limit', [None, 1])
def test_align_fill_method(test_data,
                           first_slice, second_slice,
                           join_type, method, limit):
    a = test_data.ts[slice(*first_slice)]
    b = test_data.ts[slice(*second_slice)]

    aa, ab = a.align(b, join=join_type, method=method, limit=limit)

    join_index = a.index.join(b.index, how=join_type)
    ea = a.reindex(join_index)
    eb = b.reindex(join_index)

    ea = ea.fillna(method=method, limit=limit)
    eb = eb.fillna(method=method, limit=limit)

    assert_series_equal(aa, ea)
    assert_series_equal(ab, eb)


def test_align_nocopy(test_data):
    b = test_data.ts[:5].copy()

    # do copy
    a = test_data.ts.copy()
    ra, _ = a.align(b, join='left')
    ra[:5] = 5
    assert not (a[:5] == 5).any()

    # do not copy
    a = test_data.ts.copy()
    ra, _ = a.align(b, join='left', copy=False)
    ra[:5] = 5
    assert (a[:5] == 5).all()

    # do copy
    a = test_data.ts.copy()
    b = test_data.ts[:5].copy()
    _, rb = a.align(b, join='right')
    rb[:3] = 5
    assert not (b[:3] == 5).any()

    # do not copy
    a = test_data.ts.copy()
    b = test_data.ts[:5].copy()
    _, rb = a.align(b, join='right', copy=False)
    rb[:2] = 5
    assert (b[:2] == 5).all()


def test_align_same_index(test_data):
    a, b = test_data.ts.align(test_data.ts, copy=False)
    assert a.index is test_data.ts.index
    assert b.index is test_data.ts.index

    a, b = test_data.ts.align(test_data.ts, copy=True)
    assert a.index is not test_data.ts.index
    assert b.index is not test_data.ts.index


def test_align_multiindex():
    # GH 10665

    midx = pd.MultiIndex.from_product([range(2), range(3), range(2)],
                                      names=('a', 'b', 'c'))
    idx = pd.Index(range(2), name='b')
    s1 = pd.Series(np.arange(12, dtype='int64'), index=midx)
    s2 = pd.Series(np.arange(2, dtype='int64'), index=idx)

    # these must be the same results (but flipped)
    res1l, res1r = s1.align(s2, join='left')
    res2l, res2r = s2.align(s1, join='right')

    expl = s1
    tm.assert_series_equal(expl, res1l)
    tm.assert_series_equal(expl, res2r)
    expr = pd.Series([0, 0, 1, 1, np.nan, np.nan] * 2, index=midx)
    tm.assert_series_equal(expr, res1r)
    tm.assert_series_equal(expr, res2l)

    res1l, res1r = s1.align(s2, join='right')
    res2l, res2r = s2.align(s1, join='left')

    exp_idx = pd.MultiIndex.from_product([range(2), range(2), range(2)],
                                         names=('a', 'b', 'c'))
    expl = pd.Series([0, 1, 2, 3, 6, 7, 8, 9], index=exp_idx)
    tm.assert_series_equal(expl, res1l)
    tm.assert_series_equal(expl, res2r)
    expr = pd.Series([0, 0, 1, 1] * 2, index=exp_idx)
    tm.assert_series_equal(expr, res1r)
    tm.assert_series_equal(expr, res2l)


def test_reindex(test_data):
    identity = test_data.series.reindex(test_data.series.index)

    # __array_interface__ is not defined for older numpies
    # and on some pythons
    try:
        assert np.may_share_memory(test_data.series.index, identity.index)
    except AttributeError:
        pass

    assert identity.index.is_(test_data.series.index)
    assert identity.index.identical(test_data.series.index)

    subIndex = test_data.series.index[10:20]
    subSeries = test_data.series.reindex(subIndex)

    for idx, val in compat.iteritems(subSeries):
        assert val == test_data.series[idx]

    subIndex2 = test_data.ts.index[10:20]
    subTS = test_data.ts.reindex(subIndex2)

    for idx, val in compat.iteritems(subTS):
        assert val == test_data.ts[idx]
    stuffSeries = test_data.ts.reindex(subIndex)

    assert np.isnan(stuffSeries).all()

    # This is extremely important for the Cython code to not screw up
    nonContigIndex = test_data.ts.index[::2]
    subNonContig = test_data.ts.reindex(nonContigIndex)
    for idx, val in compat.iteritems(subNonContig):
        assert val == test_data.ts[idx]

    # return a copy the same index here
    result = test_data.ts.reindex()
    assert not (result is test_data.ts)


def test_reindex_nan():
    ts = Series([2, 3, 5, 7], index=[1, 4, nan, 8])

    i, j = [nan, 1, nan, 8, 4, nan], [2, 0, 2, 3, 1, 2]
    assert_series_equal(ts.reindex(i), ts.iloc[j])

    ts.index = ts.index.astype('object')

    # reindex coerces index.dtype to float, loc/iloc doesn't
    assert_series_equal(ts.reindex(i), ts.iloc[j], check_index_type=False)


def test_reindex_series_add_nat():
    rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s')
    series = Series(rng)

    result = series.reindex(lrange(15))
    assert np.issubdtype(result.dtype, np.dtype('M8[ns]'))

    mask = result.isna()
    assert mask[-5:].all()
    assert not mask[:-5].any()


def test_reindex_with_datetimes():
    rng = date_range('1/1/2000', periods=20)
    ts = Series(np.random.randn(20), index=rng)

    result = ts.reindex(list(ts.index[5:10]))
    expected = ts[5:10]
    tm.assert_series_equal(result, expected)

    result = ts[list(ts.index[5:10])]
    tm.assert_series_equal(result, expected)


def test_reindex_corner(test_data):
    # (don't forget to fix this) I think it's fixed
    test_data.empty.reindex(test_data.ts.index, method='pad')  # it works

    # corner case: pad empty series
    reindexed = test_data.empty.reindex(test_data.ts.index, method='pad')

    # pass non-Index
    reindexed = test_data.ts.reindex(list(test_data.ts.index))
    assert_series_equal(test_data.ts, reindexed)

    # bad fill method
    ts = test_data.ts[::2]
    msg = (r"Invalid fill method\. Expecting pad \(ffill\), backfill"
           r" \(bfill\) or nearest\. Got foo")
    with pytest.raises(ValueError, match=msg):
        ts.reindex(test_data.ts.index, method='foo')


def test_reindex_pad():
    s = Series(np.arange(10), dtype='int64')
    s2 = s[::2]

    reindexed = s2.reindex(s.index, method='pad')
    reindexed2 = s2.reindex(s.index, method='ffill')
    assert_series_equal(reindexed, reindexed2)

    expected = Series([0, 0, 2, 2, 4, 4, 6, 6, 8, 8], index=np.arange(10))
    assert_series_equal(reindexed, expected)

    # GH4604
    s = Series([1, 2, 3, 4, 5], index=['a', 'b', 'c', 'd', 'e'])
    new_index = ['a', 'g', 'c', 'f']
    expected = Series([1, 1, 3, 3], index=new_index)

    # this changes dtype because the ffill happens after
    result = s.reindex(new_index).ffill()
    assert_series_equal(result, expected.astype('float64'))

    result = s.reindex(new_index).ffill(downcast='infer')
    assert_series_equal(result, expected)

    expected = Series([1, 5, 3, 5], index=new_index)
    result = s.reindex(new_index, method='ffill')
    assert_series_equal(result, expected)

    # inference of new dtype
    s = Series([True, False, False, True], index=list('abcd'))
    new_index = 'agc'
    result = s.reindex(list(new_index)).ffill()
    expected = Series([True, True, False], index=list(new_index))
    assert_series_equal(result, expected)

    # GH4618 shifted series downcasting
    s = Series(False, index=lrange(0, 5))
    result = s.shift(1).fillna(method='bfill')
    expected = Series(False, index=lrange(0, 5))
    assert_series_equal(result, expected)


def test_reindex_nearest():
    s = Series(np.arange(10, dtype='int64'))
    target = [0.1, 0.9, 1.5, 2.0]
    actual = s.reindex(target, method='nearest')
    expected = Series(np.around(target).astype('int64'), target)
    assert_series_equal(expected, actual)

    actual = s.reindex_like(actual, method='nearest')
    assert_series_equal(expected, actual)

    actual = s.reindex_like(actual, method='nearest', tolerance=1)
    assert_series_equal(expected, actual)
    actual = s.reindex_like(actual, method='nearest',
                            tolerance=[1, 2, 3, 4])
    assert_series_equal(expected, actual)

    actual = s.reindex(target, method='nearest', tolerance=0.2)
    expected = Series([0, 1, np.nan, 2], target)
    assert_series_equal(expected, actual)

    actual = s.reindex(target, method='nearest',
                       tolerance=[0.3, 0.01, 0.4, 3])
    expected = Series([0, np.nan, np.nan, 2], target)
    assert_series_equal(expected, actual)


def test_reindex_backfill():
    pass


def test_reindex_int(test_data):
    ts = test_data.ts[::2]
    int_ts = Series(np.zeros(len(ts), dtype=int), index=ts.index)

    # this should work fine
    reindexed_int = int_ts.reindex(test_data.ts.index)

    # if NaNs introduced
    assert reindexed_int.dtype == np.float_

    # NO NaNs introduced
    reindexed_int = int_ts.reindex(int_ts.index[::2])
    assert reindexed_int.dtype == np.int_


def test_reindex_bool(test_data):
    # A series other than float, int, string, or object
    ts = test_data.ts[::2]
    bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index)

    # this should work fine
    reindexed_bool = bool_ts.reindex(test_data.ts.index)

    # if NaNs introduced
    assert reindexed_bool.dtype == np.object_

    # NO NaNs introduced
    reindexed_bool = bool_ts.reindex(bool_ts.index[::2])
    assert reindexed_bool.dtype == np.bool_


def test_reindex_bool_pad(test_data):
    # fail
    ts = test_data.ts[5:]
    bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index)
    filled_bool = bool_ts.reindex(test_data.ts.index, method='pad')
    assert isna(filled_bool[:5]).all()


def test_reindex_categorical():
    index = date_range('20000101', periods=3)

    # reindexing to an invalid Categorical
    s = Series(['a', 'b', 'c'], dtype='category')
    result = s.reindex(index)
    expected = Series(Categorical(values=[np.nan, np.nan, np.nan],
                                  categories=['a', 'b', 'c']))
    expected.index = index
    tm.assert_series_equal(result, expected)

    # partial reindexing
    expected = Series(Categorical(values=['b', 'c'], categories=['a', 'b',
                                                                 'c']))
    expected.index = [1, 2]
    result = s.reindex([1, 2])
    tm.assert_series_equal(result, expected)

    expected = Series(Categorical(
        values=['c', np.nan], categories=['a', 'b', 'c']))
    expected.index = [2, 3]
    result = s.reindex([2, 3])
    tm.assert_series_equal(result, expected)


def test_reindex_like(test_data):
    other = test_data.ts[::2]
    assert_series_equal(test_data.ts.reindex(other.index),
                        test_data.ts.reindex_like(other))

    # GH 7179
    day1 = datetime(2013, 3, 5)
    day2 = datetime(2013, 5, 5)
    day3 = datetime(2014, 3, 5)

    series1 = Series([5, None, None], [day1, day2, day3])
    series2 = Series([None, None], [day1, day3])

    result = series1.reindex_like(series2, method='pad')
    expected = Series([5, np.nan], index=[day1, day3])
    assert_series_equal(result, expected)


def test_reindex_fill_value():
    # -----------------------------------------------------------
    # floats
    floats = Series([1., 2., 3.])
    result = floats.reindex([1, 2, 3])
    expected = Series([2., 3., np.nan], index=[1, 2, 3])
    assert_series_equal(result, expected)

    result = floats.reindex([1, 2, 3], fill_value=0)
    expected = Series([2., 3., 0], index=[1, 2, 3])
    assert_series_equal(result, expected)

    # -----------------------------------------------------------
    # ints
    ints = Series([1, 2, 3])

    result = ints.reindex([1, 2, 3])
    expected = Series([2., 3., np.nan], index=[1, 2, 3])
    assert_series_equal(result, expected)

    # don't upcast
    result = ints.reindex([1, 2, 3], fill_value=0)
    expected = Series([2, 3, 0], index=[1, 2, 3])
    assert issubclass(result.dtype.type, np.integer)
    assert_series_equal(result, expected)

    # -----------------------------------------------------------
    # objects
    objects = Series([1, 2, 3], dtype=object)

    result = objects.reindex([1, 2, 3])
    expected = Series([2, 3, np.nan], index=[1, 2, 3], dtype=object)
    assert_series_equal(result, expected)

    result = objects.reindex([1, 2, 3], fill_value='foo')
    expected = Series([2, 3, 'foo'], index=[1, 2, 3], dtype=object)
    assert_series_equal(result, expected)

    # ------------------------------------------------------------
    # bools
    bools = Series([True, False, True])

    result = bools.reindex([1, 2, 3])
    expected = Series([False, True, np.nan], index=[1, 2, 3], dtype=object)
    assert_series_equal(result, expected)

    result = bools.reindex([1, 2, 3], fill_value=False)
    expected = Series([False, True, False], index=[1, 2, 3])
    assert_series_equal(result, expected)


def test_reindex_datetimeindexes_tz_naive_and_aware():
    # GH 8306
    idx = date_range('20131101', tz='America/Chicago', periods=7)
    newidx = date_range('20131103', periods=10, freq='H')
    s = Series(range(7), index=idx)
    with pytest.raises(TypeError):
        s.reindex(newidx, method='ffill')


def test_reindex_empty_series_tz_dtype():
    # GH 20869
    result = Series(dtype='datetime64[ns, UTC]').reindex([0, 1])
    expected = Series([pd.NaT] * 2, dtype='datetime64[ns, UTC]')
    tm.assert_equal(result, expected)


def test_rename():
    # GH 17407
    s = Series(range(1, 6), index=pd.Index(range(2, 7), name='IntIndex'))
    result = s.rename(str)
    expected = s.rename(lambda i: str(i))
    assert_series_equal(result, expected)

    assert result.name == expected.name


@pytest.mark.parametrize(
    'data, index, drop_labels,'
    ' axis, expected_data, expected_index',
    [
        # Unique Index
        ([1, 2], ['one', 'two'], ['two'],
         0, [1], ['one']),
        ([1, 2], ['one', 'two'], ['two'],
         'rows', [1], ['one']),
        ([1, 1, 2], ['one', 'two', 'one'], ['two'],
         0, [1, 2], ['one', 'one']),

        # GH 5248 Non-Unique Index
        ([1, 1, 2], ['one', 'two', 'one'], 'two',
         0, [1, 2], ['one', 'one']),
        ([1, 1, 2], ['one', 'two', 'one'], ['one'],
         0, [1], ['two']),
        ([1, 1, 2], ['one', 'two', 'one'], 'one',
         0, [1], ['two'])])
def test_drop_unique_and_non_unique_index(data, index, axis, drop_labels,
                                          expected_data, expected_index):

    s = Series(data=data, index=index)
    result = s.drop(drop_labels, axis=axis)
    expected = Series(data=expected_data, index=expected_index)
    tm.assert_series_equal(result, expected)


@pytest.mark.parametrize(
    'data, index, drop_labels,'
    ' axis, error_type, error_desc',
    [
        # single string/tuple-like
        (range(3), list('abc'), 'bc',
         0, KeyError, 'not found in axis'),

        # bad axis
        (range(3), list('abc'), ('a',),
         0, KeyError, 'not found in axis'),
        (range(3), list('abc'), 'one',
         'columns', ValueError, 'No axis named columns')])
def test_drop_exception_raised(data, index, drop_labels,
                               axis, error_type, error_desc):

    with pytest.raises(error_type, match=error_desc):
        Series(data, index=index).drop(drop_labels, axis=axis)


def test_drop_with_ignore_errors():
    # errors='ignore'
    s = Series(range(3), index=list('abc'))
    result = s.drop('bc', errors='ignore')
    tm.assert_series_equal(result, s)
    result = s.drop(['a', 'd'], errors='ignore')
    expected = s.iloc[1:]
    tm.assert_series_equal(result, expected)

    # GH 8522
    s = Series([2, 3], index=[True, False])
    assert s.index.is_object()
    result = s.drop(True)
    expected = Series([3], index=[False])
    tm.assert_series_equal(result, expected)


@pytest.mark.parametrize('index', [[1, 2, 3], [1, 1, 3]])
@pytest.mark.parametrize('drop_labels', [[], [1], [3]])
def test_drop_empty_list(index, drop_labels):
    # GH 21494
    expected_index = [i for i in index if i not in drop_labels]
    series = pd.Series(index=index).drop(drop_labels)
    tm.assert_series_equal(series, pd.Series(index=expected_index))


@pytest.mark.parametrize('data, index, drop_labels', [
    (None, [1, 2, 3], [1, 4]),
    (None, [1, 2, 2], [1, 4]),
    ([2, 3], [0, 1], [False, True])
])
def test_drop_non_empty_list(data, index, drop_labels):
    # GH 21494 and GH 16877
    with pytest.raises(KeyError, match='not found in axis'):
        pd.Series(data=data, index=index).drop(drop_labels)