# coding=utf-8
# pylint: disable-msg=E1101,W0612
from datetime import datetime
import numpy as np
from numpy import nan
import pytest
import pandas.compat as compat
from pandas.compat import lrange, range
import pandas as pd
from pandas import Categorical, Series, date_range, isna
import pandas.util.testing as tm
from pandas.util.testing import assert_series_equal
@pytest.mark.parametrize(
'first_slice,second_slice', [
[[2, None], [None, -5]],
[[None, 0], [None, -5]],
[[None, -5], [None, 0]],
[[None, 0], [None, 0]]
])
@pytest.mark.parametrize('fill', [None, -1])
def test_align(test_data, first_slice, second_slice, join_type, fill):
a = test_data.ts[slice(*first_slice)]
b = test_data.ts[slice(*second_slice)]
aa, ab = a.align(b, join=join_type, fill_value=fill)
join_index = a.index.join(b.index, how=join_type)
if fill is not None:
diff_a = aa.index.difference(join_index)
diff_b = ab.index.difference(join_index)
if len(diff_a) > 0:
assert (aa.reindex(diff_a) == fill).all()
if len(diff_b) > 0:
assert (ab.reindex(diff_b) == fill).all()
ea = a.reindex(join_index)
eb = b.reindex(join_index)
if fill is not None:
ea = ea.fillna(fill)
eb = eb.fillna(fill)
assert_series_equal(aa, ea)
assert_series_equal(ab, eb)
assert aa.name == 'ts'
assert ea.name == 'ts'
assert ab.name == 'ts'
assert eb.name == 'ts'
@pytest.mark.parametrize(
'first_slice,second_slice', [
[[2, None], [None, -5]],
[[None, 0], [None, -5]],
[[None, -5], [None, 0]],
[[None, 0], [None, 0]]
])
@pytest.mark.parametrize('method', ['pad', 'bfill'])
@pytest.mark.parametrize('limit', [None, 1])
def test_align_fill_method(test_data,
first_slice, second_slice,
join_type, method, limit):
a = test_data.ts[slice(*first_slice)]
b = test_data.ts[slice(*second_slice)]
aa, ab = a.align(b, join=join_type, method=method, limit=limit)
join_index = a.index.join(b.index, how=join_type)
ea = a.reindex(join_index)
eb = b.reindex(join_index)
ea = ea.fillna(method=method, limit=limit)
eb = eb.fillna(method=method, limit=limit)
assert_series_equal(aa, ea)
assert_series_equal(ab, eb)
def test_align_nocopy(test_data):
b = test_data.ts[:5].copy()
# do copy
a = test_data.ts.copy()
ra, _ = a.align(b, join='left')
ra[:5] = 5
assert not (a[:5] == 5).any()
# do not copy
a = test_data.ts.copy()
ra, _ = a.align(b, join='left', copy=False)
ra[:5] = 5
assert (a[:5] == 5).all()
# do copy
a = test_data.ts.copy()
b = test_data.ts[:5].copy()
_, rb = a.align(b, join='right')
rb[:3] = 5
assert not (b[:3] == 5).any()
# do not copy
a = test_data.ts.copy()
b = test_data.ts[:5].copy()
_, rb = a.align(b, join='right', copy=False)
rb[:2] = 5
assert (b[:2] == 5).all()
def test_align_same_index(test_data):
a, b = test_data.ts.align(test_data.ts, copy=False)
assert a.index is test_data.ts.index
assert b.index is test_data.ts.index
a, b = test_data.ts.align(test_data.ts, copy=True)
assert a.index is not test_data.ts.index
assert b.index is not test_data.ts.index
def test_align_multiindex():
# GH 10665
midx = pd.MultiIndex.from_product([range(2), range(3), range(2)],
names=('a', 'b', 'c'))
idx = pd.Index(range(2), name='b')
s1 = pd.Series(np.arange(12, dtype='int64'), index=midx)
s2 = pd.Series(np.arange(2, dtype='int64'), index=idx)
# these must be the same results (but flipped)
res1l, res1r = s1.align(s2, join='left')
res2l, res2r = s2.align(s1, join='right')
expl = s1
tm.assert_series_equal(expl, res1l)
tm.assert_series_equal(expl, res2r)
expr = pd.Series([0, 0, 1, 1, np.nan, np.nan] * 2, index=midx)
tm.assert_series_equal(expr, res1r)
tm.assert_series_equal(expr, res2l)
res1l, res1r = s1.align(s2, join='right')
res2l, res2r = s2.align(s1, join='left')
exp_idx = pd.MultiIndex.from_product([range(2), range(2), range(2)],
names=('a', 'b', 'c'))
expl = pd.Series([0, 1, 2, 3, 6, 7, 8, 9], index=exp_idx)
tm.assert_series_equal(expl, res1l)
tm.assert_series_equal(expl, res2r)
expr = pd.Series([0, 0, 1, 1] * 2, index=exp_idx)
tm.assert_series_equal(expr, res1r)
tm.assert_series_equal(expr, res2l)
def test_reindex(test_data):
identity = test_data.series.reindex(test_data.series.index)
# __array_interface__ is not defined for older numpies
# and on some pythons
try:
assert np.may_share_memory(test_data.series.index, identity.index)
except AttributeError:
pass
assert identity.index.is_(test_data.series.index)
assert identity.index.identical(test_data.series.index)
subIndex = test_data.series.index[10:20]
subSeries = test_data.series.reindex(subIndex)
for idx, val in compat.iteritems(subSeries):
assert val == test_data.series[idx]
subIndex2 = test_data.ts.index[10:20]
subTS = test_data.ts.reindex(subIndex2)
for idx, val in compat.iteritems(subTS):
assert val == test_data.ts[idx]
stuffSeries = test_data.ts.reindex(subIndex)
assert np.isnan(stuffSeries).all()
# This is extremely important for the Cython code to not screw up
nonContigIndex = test_data.ts.index[::2]
subNonContig = test_data.ts.reindex(nonContigIndex)
for idx, val in compat.iteritems(subNonContig):
assert val == test_data.ts[idx]
# return a copy the same index here
result = test_data.ts.reindex()
assert not (result is test_data.ts)
def test_reindex_nan():
ts = Series([2, 3, 5, 7], index=[1, 4, nan, 8])
i, j = [nan, 1, nan, 8, 4, nan], [2, 0, 2, 3, 1, 2]
assert_series_equal(ts.reindex(i), ts.iloc[j])
ts.index = ts.index.astype('object')
# reindex coerces index.dtype to float, loc/iloc doesn't
assert_series_equal(ts.reindex(i), ts.iloc[j], check_index_type=False)
def test_reindex_series_add_nat():
rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s')
series = Series(rng)
result = series.reindex(lrange(15))
assert np.issubdtype(result.dtype, np.dtype('M8[ns]'))
mask = result.isna()
assert mask[-5:].all()
assert not mask[:-5].any()
def test_reindex_with_datetimes():
rng = date_range('1/1/2000', periods=20)
ts = Series(np.random.randn(20), index=rng)
result = ts.reindex(list(ts.index[5:10]))
expected = ts[5:10]
tm.assert_series_equal(result, expected)
result = ts[list(ts.index[5:10])]
tm.assert_series_equal(result, expected)
def test_reindex_corner(test_data):
# (don't forget to fix this) I think it's fixed
test_data.empty.reindex(test_data.ts.index, method='pad') # it works
# corner case: pad empty series
reindexed = test_data.empty.reindex(test_data.ts.index, method='pad')
# pass non-Index
reindexed = test_data.ts.reindex(list(test_data.ts.index))
assert_series_equal(test_data.ts, reindexed)
# bad fill method
ts = test_data.ts[::2]
msg = (r"Invalid fill method\. Expecting pad \(ffill\), backfill"
r" \(bfill\) or nearest\. Got foo")
with pytest.raises(ValueError, match=msg):
ts.reindex(test_data.ts.index, method='foo')
def test_reindex_pad():
s = Series(np.arange(10), dtype='int64')
s2 = s[::2]
reindexed = s2.reindex(s.index, method='pad')
reindexed2 = s2.reindex(s.index, method='ffill')
assert_series_equal(reindexed, reindexed2)
expected = Series([0, 0, 2, 2, 4, 4, 6, 6, 8, 8], index=np.arange(10))
assert_series_equal(reindexed, expected)
# GH4604
s = Series([1, 2, 3, 4, 5], index=['a', 'b', 'c', 'd', 'e'])
new_index = ['a', 'g', 'c', 'f']
expected = Series([1, 1, 3, 3], index=new_index)
# this changes dtype because the ffill happens after
result = s.reindex(new_index).ffill()
assert_series_equal(result, expected.astype('float64'))
result = s.reindex(new_index).ffill(downcast='infer')
assert_series_equal(result, expected)
expected = Series([1, 5, 3, 5], index=new_index)
result = s.reindex(new_index, method='ffill')
assert_series_equal(result, expected)
# inference of new dtype
s = Series([True, False, False, True], index=list('abcd'))
new_index = 'agc'
result = s.reindex(list(new_index)).ffill()
expected = Series([True, True, False], index=list(new_index))
assert_series_equal(result, expected)
# GH4618 shifted series downcasting
s = Series(False, index=lrange(0, 5))
result = s.shift(1).fillna(method='bfill')
expected = Series(False, index=lrange(0, 5))
assert_series_equal(result, expected)
def test_reindex_nearest():
s = Series(np.arange(10, dtype='int64'))
target = [0.1, 0.9, 1.5, 2.0]
actual = s.reindex(target, method='nearest')
expected = Series(np.around(target).astype('int64'), target)
assert_series_equal(expected, actual)
actual = s.reindex_like(actual, method='nearest')
assert_series_equal(expected, actual)
actual = s.reindex_like(actual, method='nearest', tolerance=1)
assert_series_equal(expected, actual)
actual = s.reindex_like(actual, method='nearest',
tolerance=[1, 2, 3, 4])
assert_series_equal(expected, actual)
actual = s.reindex(target, method='nearest', tolerance=0.2)
expected = Series([0, 1, np.nan, 2], target)
assert_series_equal(expected, actual)
actual = s.reindex(target, method='nearest',
tolerance=[0.3, 0.01, 0.4, 3])
expected = Series([0, np.nan, np.nan, 2], target)
assert_series_equal(expected, actual)
def test_reindex_backfill():
pass
def test_reindex_int(test_data):
ts = test_data.ts[::2]
int_ts = Series(np.zeros(len(ts), dtype=int), index=ts.index)
# this should work fine
reindexed_int = int_ts.reindex(test_data.ts.index)
# if NaNs introduced
assert reindexed_int.dtype == np.float_
# NO NaNs introduced
reindexed_int = int_ts.reindex(int_ts.index[::2])
assert reindexed_int.dtype == np.int_
def test_reindex_bool(test_data):
# A series other than float, int, string, or object
ts = test_data.ts[::2]
bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index)
# this should work fine
reindexed_bool = bool_ts.reindex(test_data.ts.index)
# if NaNs introduced
assert reindexed_bool.dtype == np.object_
# NO NaNs introduced
reindexed_bool = bool_ts.reindex(bool_ts.index[::2])
assert reindexed_bool.dtype == np.bool_
def test_reindex_bool_pad(test_data):
# fail
ts = test_data.ts[5:]
bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index)
filled_bool = bool_ts.reindex(test_data.ts.index, method='pad')
assert isna(filled_bool[:5]).all()
def test_reindex_categorical():
index = date_range('20000101', periods=3)
# reindexing to an invalid Categorical
s = Series(['a', 'b', 'c'], dtype='category')
result = s.reindex(index)
expected = Series(Categorical(values=[np.nan, np.nan, np.nan],
categories=['a', 'b', 'c']))
expected.index = index
tm.assert_series_equal(result, expected)
# partial reindexing
expected = Series(Categorical(values=['b', 'c'], categories=['a', 'b',
'c']))
expected.index = [1, 2]
result = s.reindex([1, 2])
tm.assert_series_equal(result, expected)
expected = Series(Categorical(
values=['c', np.nan], categories=['a', 'b', 'c']))
expected.index = [2, 3]
result = s.reindex([2, 3])
tm.assert_series_equal(result, expected)
def test_reindex_like(test_data):
other = test_data.ts[::2]
assert_series_equal(test_data.ts.reindex(other.index),
test_data.ts.reindex_like(other))
# GH 7179
day1 = datetime(2013, 3, 5)
day2 = datetime(2013, 5, 5)
day3 = datetime(2014, 3, 5)
series1 = Series([5, None, None], [day1, day2, day3])
series2 = Series([None, None], [day1, day3])
result = series1.reindex_like(series2, method='pad')
expected = Series([5, np.nan], index=[day1, day3])
assert_series_equal(result, expected)
def test_reindex_fill_value():
# -----------------------------------------------------------
# floats
floats = Series([1., 2., 3.])
result = floats.reindex([1, 2, 3])
expected = Series([2., 3., np.nan], index=[1, 2, 3])
assert_series_equal(result, expected)
result = floats.reindex([1, 2, 3], fill_value=0)
expected = Series([2., 3., 0], index=[1, 2, 3])
assert_series_equal(result, expected)
# -----------------------------------------------------------
# ints
ints = Series([1, 2, 3])
result = ints.reindex([1, 2, 3])
expected = Series([2., 3., np.nan], index=[1, 2, 3])
assert_series_equal(result, expected)
# don't upcast
result = ints.reindex([1, 2, 3], fill_value=0)
expected = Series([2, 3, 0], index=[1, 2, 3])
assert issubclass(result.dtype.type, np.integer)
assert_series_equal(result, expected)
# -----------------------------------------------------------
# objects
objects = Series([1, 2, 3], dtype=object)
result = objects.reindex([1, 2, 3])
expected = Series([2, 3, np.nan], index=[1, 2, 3], dtype=object)
assert_series_equal(result, expected)
result = objects.reindex([1, 2, 3], fill_value='foo')
expected = Series([2, 3, 'foo'], index=[1, 2, 3], dtype=object)
assert_series_equal(result, expected)
# ------------------------------------------------------------
# bools
bools = Series([True, False, True])
result = bools.reindex([1, 2, 3])
expected = Series([False, True, np.nan], index=[1, 2, 3], dtype=object)
assert_series_equal(result, expected)
result = bools.reindex([1, 2, 3], fill_value=False)
expected = Series([False, True, False], index=[1, 2, 3])
assert_series_equal(result, expected)
def test_reindex_datetimeindexes_tz_naive_and_aware():
# GH 8306
idx = date_range('20131101', tz='America/Chicago', periods=7)
newidx = date_range('20131103', periods=10, freq='H')
s = Series(range(7), index=idx)
with pytest.raises(TypeError):
s.reindex(newidx, method='ffill')
def test_reindex_empty_series_tz_dtype():
# GH 20869
result = Series(dtype='datetime64[ns, UTC]').reindex([0, 1])
expected = Series([pd.NaT] * 2, dtype='datetime64[ns, UTC]')
tm.assert_equal(result, expected)
def test_rename():
# GH 17407
s = Series(range(1, 6), index=pd.Index(range(2, 7), name='IntIndex'))
result = s.rename(str)
expected = s.rename(lambda i: str(i))
assert_series_equal(result, expected)
assert result.name == expected.name
@pytest.mark.parametrize(
'data, index, drop_labels,'
' axis, expected_data, expected_index',
[
# Unique Index
([1, 2], ['one', 'two'], ['two'],
0, [1], ['one']),
([1, 2], ['one', 'two'], ['two'],
'rows', [1], ['one']),
([1, 1, 2], ['one', 'two', 'one'], ['two'],
0, [1, 2], ['one', 'one']),
# GH 5248 Non-Unique Index
([1, 1, 2], ['one', 'two', 'one'], 'two',
0, [1, 2], ['one', 'one']),
([1, 1, 2], ['one', 'two', 'one'], ['one'],
0, [1], ['two']),
([1, 1, 2], ['one', 'two', 'one'], 'one',
0, [1], ['two'])])
def test_drop_unique_and_non_unique_index(data, index, axis, drop_labels,
expected_data, expected_index):
s = Series(data=data, index=index)
result = s.drop(drop_labels, axis=axis)
expected = Series(data=expected_data, index=expected_index)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
'data, index, drop_labels,'
' axis, error_type, error_desc',
[
# single string/tuple-like
(range(3), list('abc'), 'bc',
0, KeyError, 'not found in axis'),
# bad axis
(range(3), list('abc'), ('a',),
0, KeyError, 'not found in axis'),
(range(3), list('abc'), 'one',
'columns', ValueError, 'No axis named columns')])
def test_drop_exception_raised(data, index, drop_labels,
axis, error_type, error_desc):
with pytest.raises(error_type, match=error_desc):
Series(data, index=index).drop(drop_labels, axis=axis)
def test_drop_with_ignore_errors():
# errors='ignore'
s = Series(range(3), index=list('abc'))
result = s.drop('bc', errors='ignore')
tm.assert_series_equal(result, s)
result = s.drop(['a', 'd'], errors='ignore')
expected = s.iloc[1:]
tm.assert_series_equal(result, expected)
# GH 8522
s = Series([2, 3], index=[True, False])
assert s.index.is_object()
result = s.drop(True)
expected = Series([3], index=[False])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize('index', [[1, 2, 3], [1, 1, 3]])
@pytest.mark.parametrize('drop_labels', [[], [1], [3]])
def test_drop_empty_list(index, drop_labels):
# GH 21494
expected_index = [i for i in index if i not in drop_labels]
series = pd.Series(index=index).drop(drop_labels)
tm.assert_series_equal(series, pd.Series(index=expected_index))
@pytest.mark.parametrize('data, index, drop_labels', [
(None, [1, 2, 3], [1, 4]),
(None, [1, 2, 2], [1, 4]),
([2, 3], [0, 1], [False, True])
])
def test_drop_non_empty_list(data, index, drop_labels):
# GH 21494 and GH 16877
with pytest.raises(KeyError, match='not found in axis'):
pd.Series(data=data, index=index).drop(drop_labels)