Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

agriconnect / pandas   python

Repository URL to install this package:

Version: 0.24.2 

/ tests / test_join.py

# -*- coding: utf-8 -*-

import numpy as np

from pandas._libs import join as _join

from pandas import Categorical, DataFrame, Index, merge
import pandas.util.testing as tm
from pandas.util.testing import assert_almost_equal, assert_frame_equal


class TestIndexer(object):

    def test_outer_join_indexer(self):
        typemap = [('int32', _join.outer_join_indexer_int32),
                   ('int64', _join.outer_join_indexer_int64),
                   ('float32', _join.outer_join_indexer_float32),
                   ('float64', _join.outer_join_indexer_float64),
                   ('object', _join.outer_join_indexer_object)]

        for dtype, indexer in typemap:
            left = np.arange(3, dtype=dtype)
            right = np.arange(2, 5, dtype=dtype)
            empty = np.array([], dtype=dtype)

            result, lindexer, rindexer = indexer(left, right)
            assert isinstance(result, np.ndarray)
            assert isinstance(lindexer, np.ndarray)
            assert isinstance(rindexer, np.ndarray)
            tm.assert_numpy_array_equal(result, np.arange(5, dtype=dtype))
            exp = np.array([0, 1, 2, -1, -1], dtype=np.int64)
            tm.assert_numpy_array_equal(lindexer, exp)
            exp = np.array([-1, -1, 0, 1, 2], dtype=np.int64)
            tm.assert_numpy_array_equal(rindexer, exp)

            result, lindexer, rindexer = indexer(empty, right)
            tm.assert_numpy_array_equal(result, right)
            exp = np.array([-1, -1, -1], dtype=np.int64)
            tm.assert_numpy_array_equal(lindexer, exp)
            exp = np.array([0, 1, 2], dtype=np.int64)
            tm.assert_numpy_array_equal(rindexer, exp)

            result, lindexer, rindexer = indexer(left, empty)
            tm.assert_numpy_array_equal(result, left)
            exp = np.array([0, 1, 2], dtype=np.int64)
            tm.assert_numpy_array_equal(lindexer, exp)
            exp = np.array([-1, -1, -1], dtype=np.int64)
            tm.assert_numpy_array_equal(rindexer, exp)


def test_left_join_indexer_unique():
    a = np.array([1, 2, 3, 4, 5], dtype=np.int64)
    b = np.array([2, 2, 3, 4, 4], dtype=np.int64)

    result = _join.left_join_indexer_unique_int64(b, a)
    expected = np.array([1, 1, 2, 3, 3], dtype=np.int64)
    tm.assert_numpy_array_equal(result, expected)


def test_left_outer_join_bug():
    left = np.array([0, 1, 0, 1, 1, 2, 3, 1, 0, 2, 1, 2, 0, 1, 1, 2, 3, 2, 3,
                     2, 1, 1, 3, 0, 3, 2, 3, 0, 0, 2, 3, 2, 0, 3, 1, 3, 0, 1,
                     3, 0, 0, 1, 0, 3, 1, 0, 1, 0, 1, 1, 0, 2, 2, 2, 2, 2, 0,
                     3, 1, 2, 0, 0, 3, 1, 3, 2, 2, 0, 1, 3, 0, 2, 3, 2, 3, 3,
                     2, 3, 3, 1, 3, 2, 0, 0, 3, 1, 1, 1, 0, 2, 3, 3, 1, 2, 0,
                     3, 1, 2, 0, 2], dtype=np.int64)

    right = np.array([3, 1], dtype=np.int64)
    max_groups = 4

    lidx, ridx = _join.left_outer_join(left, right, max_groups, sort=False)

    exp_lidx = np.arange(len(left), dtype=np.int64)
    exp_ridx = -np.ones(len(left), dtype=np.int64)

    exp_ridx[left == 1] = 1
    exp_ridx[left == 3] = 0

    tm.assert_numpy_array_equal(lidx, exp_lidx)
    tm.assert_numpy_array_equal(ridx, exp_ridx)


def test_inner_join_indexer():
    a = np.array([1, 2, 3, 4, 5], dtype=np.int64)
    b = np.array([0, 3, 5, 7, 9], dtype=np.int64)

    index, ares, bres = _join.inner_join_indexer_int64(a, b)

    index_exp = np.array([3, 5], dtype=np.int64)
    assert_almost_equal(index, index_exp)

    aexp = np.array([2, 4], dtype=np.int64)
    bexp = np.array([1, 2], dtype=np.int64)
    assert_almost_equal(ares, aexp)
    assert_almost_equal(bres, bexp)

    a = np.array([5], dtype=np.int64)
    b = np.array([5], dtype=np.int64)

    index, ares, bres = _join.inner_join_indexer_int64(a, b)
    tm.assert_numpy_array_equal(index, np.array([5], dtype=np.int64))
    tm.assert_numpy_array_equal(ares, np.array([0], dtype=np.int64))
    tm.assert_numpy_array_equal(bres, np.array([0], dtype=np.int64))


def test_outer_join_indexer():
    a = np.array([1, 2, 3, 4, 5], dtype=np.int64)
    b = np.array([0, 3, 5, 7, 9], dtype=np.int64)

    index, ares, bres = _join.outer_join_indexer_int64(a, b)

    index_exp = np.array([0, 1, 2, 3, 4, 5, 7, 9], dtype=np.int64)
    assert_almost_equal(index, index_exp)

    aexp = np.array([-1, 0, 1, 2, 3, 4, -1, -1], dtype=np.int64)
    bexp = np.array([0, -1, -1, 1, -1, 2, 3, 4], dtype=np.int64)
    assert_almost_equal(ares, aexp)
    assert_almost_equal(bres, bexp)

    a = np.array([5], dtype=np.int64)
    b = np.array([5], dtype=np.int64)

    index, ares, bres = _join.outer_join_indexer_int64(a, b)
    tm.assert_numpy_array_equal(index, np.array([5], dtype=np.int64))
    tm.assert_numpy_array_equal(ares, np.array([0], dtype=np.int64))
    tm.assert_numpy_array_equal(bres, np.array([0], dtype=np.int64))


def test_left_join_indexer():
    a = np.array([1, 2, 3, 4, 5], dtype=np.int64)
    b = np.array([0, 3, 5, 7, 9], dtype=np.int64)

    index, ares, bres = _join.left_join_indexer_int64(a, b)

    assert_almost_equal(index, a)

    aexp = np.array([0, 1, 2, 3, 4], dtype=np.int64)
    bexp = np.array([-1, -1, 1, -1, 2], dtype=np.int64)
    assert_almost_equal(ares, aexp)
    assert_almost_equal(bres, bexp)

    a = np.array([5], dtype=np.int64)
    b = np.array([5], dtype=np.int64)

    index, ares, bres = _join.left_join_indexer_int64(a, b)
    tm.assert_numpy_array_equal(index, np.array([5], dtype=np.int64))
    tm.assert_numpy_array_equal(ares, np.array([0], dtype=np.int64))
    tm.assert_numpy_array_equal(bres, np.array([0], dtype=np.int64))


def test_left_join_indexer2():
    idx = Index([1, 1, 2, 5])
    idx2 = Index([1, 2, 5, 7, 9])

    res, lidx, ridx = _join.left_join_indexer_int64(idx2.values, idx.values)

    exp_res = np.array([1, 1, 2, 5, 7, 9], dtype=np.int64)
    assert_almost_equal(res, exp_res)

    exp_lidx = np.array([0, 0, 1, 2, 3, 4], dtype=np.int64)
    assert_almost_equal(lidx, exp_lidx)

    exp_ridx = np.array([0, 1, 2, 3, -1, -1], dtype=np.int64)
    assert_almost_equal(ridx, exp_ridx)


def test_outer_join_indexer2():
    idx = Index([1, 1, 2, 5])
    idx2 = Index([1, 2, 5, 7, 9])

    res, lidx, ridx = _join.outer_join_indexer_int64(idx2.values, idx.values)

    exp_res = np.array([1, 1, 2, 5, 7, 9], dtype=np.int64)
    assert_almost_equal(res, exp_res)

    exp_lidx = np.array([0, 0, 1, 2, 3, 4], dtype=np.int64)
    assert_almost_equal(lidx, exp_lidx)

    exp_ridx = np.array([0, 1, 2, 3, -1, -1], dtype=np.int64)
    assert_almost_equal(ridx, exp_ridx)


def test_inner_join_indexer2():
    idx = Index([1, 1, 2, 5])
    idx2 = Index([1, 2, 5, 7, 9])

    res, lidx, ridx = _join.inner_join_indexer_int64(idx2.values, idx.values)

    exp_res = np.array([1, 1, 2, 5], dtype=np.int64)
    assert_almost_equal(res, exp_res)

    exp_lidx = np.array([0, 0, 1, 2], dtype=np.int64)
    assert_almost_equal(lidx, exp_lidx)

    exp_ridx = np.array([0, 1, 2, 3], dtype=np.int64)
    assert_almost_equal(ridx, exp_ridx)


def test_merge_join_categorical_multiindex():
    # From issue 16627
    a = {'Cat1': Categorical(['a', 'b', 'a', 'c', 'a', 'b'],
                             ['a', 'b', 'c']),
         'Int1': [0, 1, 0, 1, 0, 0]}
    a = DataFrame(a)

    b = {'Cat': Categorical(['a', 'b', 'c', 'a', 'b', 'c'],
                            ['a', 'b', 'c']),
         'Int': [0, 0, 0, 1, 1, 1],
         'Factor': [1.1, 1.2, 1.3, 1.4, 1.5, 1.6]}
    b = DataFrame(b).set_index(['Cat', 'Int'])['Factor']

    expected = merge(a, b.reset_index(), left_on=['Cat1', 'Int1'],
                     right_on=['Cat', 'Int'], how='left')
    result = a.join(b, on=['Cat1', 'Int1'])
    expected = expected.drop(['Cat', 'Int'], axis=1)
    assert_frame_equal(expected, result)

    # Same test, but with ordered categorical
    a = {'Cat1': Categorical(['a', 'b', 'a', 'c', 'a', 'b'],
                             ['b', 'a', 'c'],
                             ordered=True),
         'Int1': [0, 1, 0, 1, 0, 0]}
    a = DataFrame(a)

    b = {'Cat': Categorical(['a', 'b', 'c', 'a', 'b', 'c'],
                            ['b', 'a', 'c'],
                            ordered=True),
         'Int': [0, 0, 0, 1, 1, 1],
         'Factor': [1.1, 1.2, 1.3, 1.4, 1.5, 1.6]}
    b = DataFrame(b).set_index(['Cat', 'Int'])['Factor']

    expected = merge(a, b.reset_index(), left_on=['Cat1', 'Int1'],
                     right_on=['Cat', 'Int'], how='left')
    result = a.join(b, on=['Cat1', 'Int1'])
    expected = expected.drop(['Cat', 'Int'], axis=1)
    assert_frame_equal(expected, result)