# -*- coding: utf-8 -*-
import numpy as np
from pandas._libs import join as _join
from pandas import Categorical, DataFrame, Index, merge
import pandas.util.testing as tm
from pandas.util.testing import assert_almost_equal, assert_frame_equal
class TestIndexer(object):
def test_outer_join_indexer(self):
typemap = [('int32', _join.outer_join_indexer_int32),
('int64', _join.outer_join_indexer_int64),
('float32', _join.outer_join_indexer_float32),
('float64', _join.outer_join_indexer_float64),
('object', _join.outer_join_indexer_object)]
for dtype, indexer in typemap:
left = np.arange(3, dtype=dtype)
right = np.arange(2, 5, dtype=dtype)
empty = np.array([], dtype=dtype)
result, lindexer, rindexer = indexer(left, right)
assert isinstance(result, np.ndarray)
assert isinstance(lindexer, np.ndarray)
assert isinstance(rindexer, np.ndarray)
tm.assert_numpy_array_equal(result, np.arange(5, dtype=dtype))
exp = np.array([0, 1, 2, -1, -1], dtype=np.int64)
tm.assert_numpy_array_equal(lindexer, exp)
exp = np.array([-1, -1, 0, 1, 2], dtype=np.int64)
tm.assert_numpy_array_equal(rindexer, exp)
result, lindexer, rindexer = indexer(empty, right)
tm.assert_numpy_array_equal(result, right)
exp = np.array([-1, -1, -1], dtype=np.int64)
tm.assert_numpy_array_equal(lindexer, exp)
exp = np.array([0, 1, 2], dtype=np.int64)
tm.assert_numpy_array_equal(rindexer, exp)
result, lindexer, rindexer = indexer(left, empty)
tm.assert_numpy_array_equal(result, left)
exp = np.array([0, 1, 2], dtype=np.int64)
tm.assert_numpy_array_equal(lindexer, exp)
exp = np.array([-1, -1, -1], dtype=np.int64)
tm.assert_numpy_array_equal(rindexer, exp)
def test_left_join_indexer_unique():
a = np.array([1, 2, 3, 4, 5], dtype=np.int64)
b = np.array([2, 2, 3, 4, 4], dtype=np.int64)
result = _join.left_join_indexer_unique_int64(b, a)
expected = np.array([1, 1, 2, 3, 3], dtype=np.int64)
tm.assert_numpy_array_equal(result, expected)
def test_left_outer_join_bug():
left = np.array([0, 1, 0, 1, 1, 2, 3, 1, 0, 2, 1, 2, 0, 1, 1, 2, 3, 2, 3,
2, 1, 1, 3, 0, 3, 2, 3, 0, 0, 2, 3, 2, 0, 3, 1, 3, 0, 1,
3, 0, 0, 1, 0, 3, 1, 0, 1, 0, 1, 1, 0, 2, 2, 2, 2, 2, 0,
3, 1, 2, 0, 0, 3, 1, 3, 2, 2, 0, 1, 3, 0, 2, 3, 2, 3, 3,
2, 3, 3, 1, 3, 2, 0, 0, 3, 1, 1, 1, 0, 2, 3, 3, 1, 2, 0,
3, 1, 2, 0, 2], dtype=np.int64)
right = np.array([3, 1], dtype=np.int64)
max_groups = 4
lidx, ridx = _join.left_outer_join(left, right, max_groups, sort=False)
exp_lidx = np.arange(len(left), dtype=np.int64)
exp_ridx = -np.ones(len(left), dtype=np.int64)
exp_ridx[left == 1] = 1
exp_ridx[left == 3] = 0
tm.assert_numpy_array_equal(lidx, exp_lidx)
tm.assert_numpy_array_equal(ridx, exp_ridx)
def test_inner_join_indexer():
a = np.array([1, 2, 3, 4, 5], dtype=np.int64)
b = np.array([0, 3, 5, 7, 9], dtype=np.int64)
index, ares, bres = _join.inner_join_indexer_int64(a, b)
index_exp = np.array([3, 5], dtype=np.int64)
assert_almost_equal(index, index_exp)
aexp = np.array([2, 4], dtype=np.int64)
bexp = np.array([1, 2], dtype=np.int64)
assert_almost_equal(ares, aexp)
assert_almost_equal(bres, bexp)
a = np.array([5], dtype=np.int64)
b = np.array([5], dtype=np.int64)
index, ares, bres = _join.inner_join_indexer_int64(a, b)
tm.assert_numpy_array_equal(index, np.array([5], dtype=np.int64))
tm.assert_numpy_array_equal(ares, np.array([0], dtype=np.int64))
tm.assert_numpy_array_equal(bres, np.array([0], dtype=np.int64))
def test_outer_join_indexer():
a = np.array([1, 2, 3, 4, 5], dtype=np.int64)
b = np.array([0, 3, 5, 7, 9], dtype=np.int64)
index, ares, bres = _join.outer_join_indexer_int64(a, b)
index_exp = np.array([0, 1, 2, 3, 4, 5, 7, 9], dtype=np.int64)
assert_almost_equal(index, index_exp)
aexp = np.array([-1, 0, 1, 2, 3, 4, -1, -1], dtype=np.int64)
bexp = np.array([0, -1, -1, 1, -1, 2, 3, 4], dtype=np.int64)
assert_almost_equal(ares, aexp)
assert_almost_equal(bres, bexp)
a = np.array([5], dtype=np.int64)
b = np.array([5], dtype=np.int64)
index, ares, bres = _join.outer_join_indexer_int64(a, b)
tm.assert_numpy_array_equal(index, np.array([5], dtype=np.int64))
tm.assert_numpy_array_equal(ares, np.array([0], dtype=np.int64))
tm.assert_numpy_array_equal(bres, np.array([0], dtype=np.int64))
def test_left_join_indexer():
a = np.array([1, 2, 3, 4, 5], dtype=np.int64)
b = np.array([0, 3, 5, 7, 9], dtype=np.int64)
index, ares, bres = _join.left_join_indexer_int64(a, b)
assert_almost_equal(index, a)
aexp = np.array([0, 1, 2, 3, 4], dtype=np.int64)
bexp = np.array([-1, -1, 1, -1, 2], dtype=np.int64)
assert_almost_equal(ares, aexp)
assert_almost_equal(bres, bexp)
a = np.array([5], dtype=np.int64)
b = np.array([5], dtype=np.int64)
index, ares, bres = _join.left_join_indexer_int64(a, b)
tm.assert_numpy_array_equal(index, np.array([5], dtype=np.int64))
tm.assert_numpy_array_equal(ares, np.array([0], dtype=np.int64))
tm.assert_numpy_array_equal(bres, np.array([0], dtype=np.int64))
def test_left_join_indexer2():
idx = Index([1, 1, 2, 5])
idx2 = Index([1, 2, 5, 7, 9])
res, lidx, ridx = _join.left_join_indexer_int64(idx2.values, idx.values)
exp_res = np.array([1, 1, 2, 5, 7, 9], dtype=np.int64)
assert_almost_equal(res, exp_res)
exp_lidx = np.array([0, 0, 1, 2, 3, 4], dtype=np.int64)
assert_almost_equal(lidx, exp_lidx)
exp_ridx = np.array([0, 1, 2, 3, -1, -1], dtype=np.int64)
assert_almost_equal(ridx, exp_ridx)
def test_outer_join_indexer2():
idx = Index([1, 1, 2, 5])
idx2 = Index([1, 2, 5, 7, 9])
res, lidx, ridx = _join.outer_join_indexer_int64(idx2.values, idx.values)
exp_res = np.array([1, 1, 2, 5, 7, 9], dtype=np.int64)
assert_almost_equal(res, exp_res)
exp_lidx = np.array([0, 0, 1, 2, 3, 4], dtype=np.int64)
assert_almost_equal(lidx, exp_lidx)
exp_ridx = np.array([0, 1, 2, 3, -1, -1], dtype=np.int64)
assert_almost_equal(ridx, exp_ridx)
def test_inner_join_indexer2():
idx = Index([1, 1, 2, 5])
idx2 = Index([1, 2, 5, 7, 9])
res, lidx, ridx = _join.inner_join_indexer_int64(idx2.values, idx.values)
exp_res = np.array([1, 1, 2, 5], dtype=np.int64)
assert_almost_equal(res, exp_res)
exp_lidx = np.array([0, 0, 1, 2], dtype=np.int64)
assert_almost_equal(lidx, exp_lidx)
exp_ridx = np.array([0, 1, 2, 3], dtype=np.int64)
assert_almost_equal(ridx, exp_ridx)
def test_merge_join_categorical_multiindex():
# From issue 16627
a = {'Cat1': Categorical(['a', 'b', 'a', 'c', 'a', 'b'],
['a', 'b', 'c']),
'Int1': [0, 1, 0, 1, 0, 0]}
a = DataFrame(a)
b = {'Cat': Categorical(['a', 'b', 'c', 'a', 'b', 'c'],
['a', 'b', 'c']),
'Int': [0, 0, 0, 1, 1, 1],
'Factor': [1.1, 1.2, 1.3, 1.4, 1.5, 1.6]}
b = DataFrame(b).set_index(['Cat', 'Int'])['Factor']
expected = merge(a, b.reset_index(), left_on=['Cat1', 'Int1'],
right_on=['Cat', 'Int'], how='left')
result = a.join(b, on=['Cat1', 'Int1'])
expected = expected.drop(['Cat', 'Int'], axis=1)
assert_frame_equal(expected, result)
# Same test, but with ordered categorical
a = {'Cat1': Categorical(['a', 'b', 'a', 'c', 'a', 'b'],
['b', 'a', 'c'],
ordered=True),
'Int1': [0, 1, 0, 1, 0, 0]}
a = DataFrame(a)
b = {'Cat': Categorical(['a', 'b', 'c', 'a', 'b', 'c'],
['b', 'a', 'c'],
ordered=True),
'Int': [0, 0, 0, 1, 1, 1],
'Factor': [1.1, 1.2, 1.3, 1.4, 1.5, 1.6]}
b = DataFrame(b).set_index(['Cat', 'Int'])['Factor']
expected = merge(a, b.reset_index(), left_on=['Cat1', 'Int1'],
right_on=['Cat', 'Int'], how='left')
result = a.join(b, on=['Cat1', 'Int1'])
expected = expected.drop(['Cat', 'Int'], axis=1)
assert_frame_equal(expected, result)