Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

agriconnect / pandas   python

Repository URL to install this package:

Version: 0.24.2 

/ tests / test_sorting.py

from collections import defaultdict
from datetime import datetime
from itertools import product
import warnings

import numpy as np
from numpy import nan
import pytest

from pandas import (
    DataFrame, MultiIndex, Series, compat, concat, merge, to_datetime)
from pandas.core import common as com
from pandas.core.sorting import (
    decons_group_index, get_group_index, is_int64_overflow_possible,
    lexsort_indexer, nargsort, safe_sort)
from pandas.util import testing as tm
from pandas.util.testing import assert_frame_equal, assert_series_equal


class TestSorting(object):

    @pytest.mark.slow
    def test_int64_overflow(self):

        B = np.concatenate((np.arange(1000), np.arange(1000), np.arange(500)))
        A = np.arange(2500)
        df = DataFrame({'A': A,
                        'B': B,
                        'C': A,
                        'D': B,
                        'E': A,
                        'F': B,
                        'G': A,
                        'H': B,
                        'values': np.random.randn(2500)})

        lg = df.groupby(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H'])
        rg = df.groupby(['H', 'G', 'F', 'E', 'D', 'C', 'B', 'A'])

        left = lg.sum()['values']
        right = rg.sum()['values']

        exp_index, _ = left.index.sortlevel()
        tm.assert_index_equal(left.index, exp_index)

        exp_index, _ = right.index.sortlevel(0)
        tm.assert_index_equal(right.index, exp_index)

        tups = list(map(tuple, df[['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H'
                                   ]].values))
        tups = com.asarray_tuplesafe(tups)

        expected = df.groupby(tups).sum()['values']

        for k, v in compat.iteritems(expected):
            assert left[k] == right[k[::-1]]
            assert left[k] == v
        assert len(left) == len(right)

    def test_int64_overflow_moar(self):

        # GH9096
        values = range(55109)
        data = DataFrame.from_dict(
            {'a': values, 'b': values, 'c': values, 'd': values})
        grouped = data.groupby(['a', 'b', 'c', 'd'])
        assert len(grouped) == len(values)

        arr = np.random.randint(-1 << 12, 1 << 12, (1 << 15, 5))
        i = np.random.choice(len(arr), len(arr) * 4)
        arr = np.vstack((arr, arr[i]))  # add sume duplicate rows

        i = np.random.permutation(len(arr))
        arr = arr[i]  # shuffle rows

        df = DataFrame(arr, columns=list('abcde'))
        df['jim'], df['joe'] = np.random.randn(2, len(df)) * 10
        gr = df.groupby(list('abcde'))

        # verify this is testing what it is supposed to test!
        assert is_int64_overflow_possible(gr.grouper.shape)

        # manually compute groupings
        jim, joe = defaultdict(list), defaultdict(list)
        for key, a, b in zip(map(tuple, arr), df['jim'], df['joe']):
            jim[key].append(a)
            joe[key].append(b)

        assert len(gr) == len(jim)
        mi = MultiIndex.from_tuples(jim.keys(), names=list('abcde'))

        def aggr(func):
            f = lambda a: np.fromiter(map(func, a), dtype='f8')
            arr = np.vstack((f(jim.values()), f(joe.values()))).T
            res = DataFrame(arr, columns=['jim', 'joe'], index=mi)
            return res.sort_index()

        assert_frame_equal(gr.mean(), aggr(np.mean))
        assert_frame_equal(gr.median(), aggr(np.median))

    def test_lexsort_indexer(self):
        keys = [[nan] * 5 + list(range(100)) + [nan] * 5]
        # orders=True, na_position='last'
        result = lexsort_indexer(keys, orders=True, na_position='last')
        exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110))
        tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp))

        # orders=True, na_position='first'
        result = lexsort_indexer(keys, orders=True, na_position='first')
        exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105))
        tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp))

        # orders=False, na_position='last'
        result = lexsort_indexer(keys, orders=False, na_position='last')
        exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110))
        tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp))

        # orders=False, na_position='first'
        result = lexsort_indexer(keys, orders=False, na_position='first')
        exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1))
        tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp))

    def test_nargsort(self):
        # np.argsort(items) places NaNs last
        items = [nan] * 5 + list(range(100)) + [nan] * 5
        # np.argsort(items2) may not place NaNs first
        items2 = np.array(items, dtype='O')

        # mergesort is the most difficult to get right because we want it to be
        # stable.

        # According to numpy/core/tests/test_multiarray, """The number of
        # sorted items must be greater than ~50 to check the actual algorithm
        # because quick and merge sort fall over to insertion sort for small
        # arrays."""

        # mergesort, ascending=True, na_position='last'
        result = nargsort(items, kind='mergesort', ascending=True,
                          na_position='last')
        exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=True, na_position='first'
        result = nargsort(items, kind='mergesort', ascending=True,
                          na_position='first')
        exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=False, na_position='last'
        result = nargsort(items, kind='mergesort', ascending=False,
                          na_position='last')
        exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=False, na_position='first'
        result = nargsort(items, kind='mergesort', ascending=False,
                          na_position='first')
        exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=True, na_position='last'
        result = nargsort(items2, kind='mergesort', ascending=True,
                          na_position='last')
        exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=True, na_position='first'
        result = nargsort(items2, kind='mergesort', ascending=True,
                          na_position='first')
        exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=False, na_position='last'
        result = nargsort(items2, kind='mergesort', ascending=False,
                          na_position='last')
        exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=False, na_position='first'
        result = nargsort(items2, kind='mergesort', ascending=False,
                          na_position='first')
        exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

    def test_nargsort_datetimearray_warning(self):
        # https://github.com/pandas-dev/pandas/issues/25439
        # can be removed once the FutureWarning for np.array(DTA) is removed
        data = to_datetime([0, 2, 0, 1]).tz_localize('Europe/Brussels')
        with tm.assert_produces_warning(None):
            nargsort(data)


class TestMerge(object):

    @pytest.mark.slow
    def test_int64_overflow_issues(self):

        # #2690, combinatorial explosion
        df1 = DataFrame(np.random.randn(1000, 7),
                        columns=list('ABCDEF') + ['G1'])
        df2 = DataFrame(np.random.randn(1000, 7),
                        columns=list('ABCDEF') + ['G2'])

        # it works!
        result = merge(df1, df2, how='outer')
        assert len(result) == 2000

        low, high, n = -1 << 10, 1 << 10, 1 << 20
        left = DataFrame(np.random.randint(low, high, (n, 7)),
                         columns=list('ABCDEFG'))
        left['left'] = left.sum(axis=1)

        # one-2-one match
        i = np.random.permutation(len(left))
        right = left.iloc[i].copy()
        right.columns = right.columns[:-1].tolist() + ['right']
        right.index = np.arange(len(right))
        right['right'] *= -1

        out = merge(left, right, how='outer')
        assert len(out) == len(left)
        assert_series_equal(out['left'], - out['right'], check_names=False)
        result = out.iloc[:, :-2].sum(axis=1)
        assert_series_equal(out['left'], result, check_names=False)
        assert result.name is None

        out.sort_values(out.columns.tolist(), inplace=True)
        out.index = np.arange(len(out))
        for how in ['left', 'right', 'outer', 'inner']:
            assert_frame_equal(out, merge(left, right, how=how, sort=True))

        # check that left merge w/ sort=False maintains left frame order
        out = merge(left, right, how='left', sort=False)
        assert_frame_equal(left, out[left.columns.tolist()])

        out = merge(right, left, how='left', sort=False)
        assert_frame_equal(right, out[right.columns.tolist()])

        # one-2-many/none match
        n = 1 << 11
        left = DataFrame(np.random.randint(low, high, (n, 7)).astype('int64'),
                         columns=list('ABCDEFG'))

        # confirm that this is checking what it is supposed to check
        shape = left.apply(Series.nunique).values
        assert is_int64_overflow_possible(shape)

        # add duplicates to left frame
        left = concat([left, left], ignore_index=True)

        right = DataFrame(np.random.randint(low, high, (n // 2, 7))
                          .astype('int64'),
                          columns=list('ABCDEFG'))

        # add duplicates & overlap with left to the right frame
        i = np.random.choice(len(left), n)
        right = concat([right, right, left.iloc[i]], ignore_index=True)

        left['left'] = np.random.randn(len(left))
        right['right'] = np.random.randn(len(right))

        # shuffle left & right frames
        i = np.random.permutation(len(left))
        left = left.iloc[i].copy()
        left.index = np.arange(len(left))

        i = np.random.permutation(len(right))
        right = right.iloc[i].copy()
        right.index = np.arange(len(right))

        # manually compute outer merge
        ldict, rdict = defaultdict(list), defaultdict(list)

        for idx, row in left.set_index(list('ABCDEFG')).iterrows():
            ldict[idx].append(row['left'])

        for idx, row in right.set_index(list('ABCDEFG')).iterrows():
            rdict[idx].append(row['right'])

        vals = []
        for k, lval in ldict.items():
            rval = rdict.get(k, [np.nan])
            for lv, rv in product(lval, rval):
                vals.append(k + tuple([lv, rv]))

        for k, rval in rdict.items():
            if k not in ldict:
                for rv in rval:
                    vals.append(k + tuple([np.nan, rv]))

        def align(df):
            df = df.sort_values(df.columns.tolist())
            df.index = np.arange(len(df))
            return df

        def verify_order(df):
            kcols = list('ABCDEFG')
            assert_frame_equal(df[kcols].copy(),
                               df[kcols].sort_values(kcols, kind='mergesort'))

        out = DataFrame(vals, columns=list('ABCDEFG') + ['left', 'right'])
        out = align(out)

        jmask = {'left': out['left'].notna(),
                 'right': out['right'].notna(),
                 'inner': out['left'].notna() & out['right'].notna(),
                 'outer': np.ones(len(out), dtype='bool')}

        for how in 'left', 'right', 'outer', 'inner':
            mask = jmask[how]
            frame = align(out[mask].copy())
            assert mask.all() ^ mask.any() or how == 'outer'

            for sort in [False, True]:
                res = merge(left, right, how=how, sort=sort)
                if sort:
                    verify_order(res)

                # as in GH9092 dtypes break with outer/right join
                assert_frame_equal(frame, align(res),
                                   check_dtype=how not in ('right', 'outer'))


def test_decons():

    def testit(label_list, shape):
        group_index = get_group_index(label_list, shape, sort=True, xnull=True)
        label_list2 = decons_group_index(group_index, shape)

        for a, b in zip(label_list, label_list2):
            tm.assert_numpy_array_equal(a, b)

    shape = (4, 5, 6)
    label_list = [np.tile([0, 1, 2, 3, 0, 1, 2, 3], 100).astype(np.int64),
                  np.tile([0, 2, 4, 3, 0, 1, 2, 3], 100).astype(np.int64),
                  np.tile([5, 1, 0, 2, 3, 0, 5, 4], 100).astype(np.int64)]
    testit(label_list, shape)

    shape = (10000, 10000)
    label_list = [np.tile(np.arange(10000, dtype=np.int64), 5),
                  np.tile(np.arange(10000, dtype=np.int64), 5)]
    testit(label_list, shape)


class TestSafeSort(object):
Loading ...