Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

alkaline-ml / pandas   python

Repository URL to install this package:

Version: 1.1.1 

/ io / json / _table_schema.py

"""
Table Schema builders

https://specs.frictionlessdata.io/json-table-schema/
"""
from typing import TYPE_CHECKING, Any, Dict, Optional, cast
import warnings

import pandas._libs.json as json
from pandas._typing import DtypeObj, FrameOrSeries, JSONSerializable

from pandas.core.dtypes.common import (
    is_bool_dtype,
    is_categorical_dtype,
    is_datetime64_dtype,
    is_datetime64tz_dtype,
    is_integer_dtype,
    is_numeric_dtype,
    is_period_dtype,
    is_string_dtype,
    is_timedelta64_dtype,
)
from pandas.core.dtypes.dtypes import CategoricalDtype

from pandas import DataFrame
import pandas.core.common as com

if TYPE_CHECKING:
    from pandas.core.indexes.multi import MultiIndex  # noqa: F401

loads = json.loads


def as_json_table_type(x: DtypeObj) -> str:
    """
    Convert a NumPy / pandas type to its corresponding json_table.

    Parameters
    ----------
    x : np.dtype or ExtensionDtype

    Returns
    -------
    str
        the Table Schema data types

    Notes
    -----
    This table shows the relationship between NumPy / pandas dtypes,
    and Table Schema dtypes.

    ==============  =================
    Pandas type     Table Schema type
    ==============  =================
    int64           integer
    float64         number
    bool            boolean
    datetime64[ns]  datetime
    timedelta64[ns] duration
    object          str
    categorical     any
    =============== =================
    """
    if is_integer_dtype(x):
        return "integer"
    elif is_bool_dtype(x):
        return "boolean"
    elif is_numeric_dtype(x):
        return "number"
    elif is_datetime64_dtype(x) or is_datetime64tz_dtype(x) or is_period_dtype(x):
        return "datetime"
    elif is_timedelta64_dtype(x):
        return "duration"
    elif is_categorical_dtype(x):
        return "any"
    elif is_string_dtype(x):
        return "string"
    else:
        return "any"


def set_default_names(data):
    """Sets index names to 'index' for regular, or 'level_x' for Multi"""
    if com.all_not_none(*data.index.names):
        nms = data.index.names
        if len(nms) == 1 and data.index.name == "index":
            warnings.warn("Index name of 'index' is not round-trippable")
        elif len(nms) > 1 and any(x.startswith("level_") for x in nms):
            warnings.warn("Index names beginning with 'level_' are not round-trippable")
        return data

    data = data.copy()
    if data.index.nlevels > 1:
        names = [
            name if name is not None else f"level_{i}"
            for i, name in enumerate(data.index.names)
        ]
        data.index.names = names
    else:
        data.index.name = data.index.name or "index"
    return data


def convert_pandas_type_to_json_field(arr):
    dtype = arr.dtype
    if arr.name is None:
        name = "values"
    else:
        name = arr.name
    field: Dict[str, JSONSerializable] = {
        "name": name,
        "type": as_json_table_type(dtype),
    }

    if is_categorical_dtype(dtype):
        cats = dtype.categories
        ordered = dtype.ordered

        field["constraints"] = {"enum": list(cats)}
        field["ordered"] = ordered
    elif is_period_dtype(dtype):
        field["freq"] = dtype.freq.freqstr
    elif is_datetime64tz_dtype(dtype):
        field["tz"] = dtype.tz.zone
    return field


def convert_json_field_to_pandas_type(field):
    """
    Converts a JSON field descriptor into its corresponding NumPy / pandas type

    Parameters
    ----------
    field
        A JSON field descriptor

    Returns
    -------
    dtype

    Raises
    ------
    ValueError
        If the type of the provided field is unknown or currently unsupported

    Examples
    --------
    >>> convert_json_field_to_pandas_type({'name': 'an_int',
                                           'type': 'integer'})
    'int64'
    >>> convert_json_field_to_pandas_type({'name': 'a_categorical',
                                           'type': 'any',
                                           'constraints': {'enum': [
                                                          'a', 'b', 'c']},
                                           'ordered': True})
    'CategoricalDtype(categories=['a', 'b', 'c'], ordered=True)'
    >>> convert_json_field_to_pandas_type({'name': 'a_datetime',
                                           'type': 'datetime'})
    'datetime64[ns]'
    >>> convert_json_field_to_pandas_type({'name': 'a_datetime_with_tz',
                                           'type': 'datetime',
                                           'tz': 'US/Central'})
    'datetime64[ns, US/Central]'
    """
    typ = field["type"]
    if typ == "string":
        return "object"
    elif typ == "integer":
        return "int64"
    elif typ == "number":
        return "float64"
    elif typ == "boolean":
        return "bool"
    elif typ == "duration":
        return "timedelta64"
    elif typ == "datetime":
        if field.get("tz"):
            return f"datetime64[ns, {field['tz']}]"
        else:
            return "datetime64[ns]"
    elif typ == "any":
        if "constraints" in field and "ordered" in field:
            return CategoricalDtype(
                categories=field["constraints"]["enum"], ordered=field["ordered"]
            )
        else:
            return "object"

    raise ValueError(f"Unsupported or invalid field type: {typ}")


def build_table_schema(
    data: FrameOrSeries,
    index: bool = True,
    primary_key: Optional[bool] = None,
    version: bool = True,
) -> Dict[str, JSONSerializable]:
    """
    Create a Table schema from ``data``.

    Parameters
    ----------
    data : Series, DataFrame
    index : bool, default True
        Whether to include ``data.index`` in the schema.
    primary_key : bool or None, default True
        Column names to designate as the primary key.
        The default `None` will set `'primaryKey'` to the index
        level or levels if the index is unique.
    version : bool, default True
        Whether to include a field `pandas_version` with the version
        of pandas that generated the schema.

    Returns
    -------
    schema : dict

    Notes
    -----
    See `Table Schema
    <https://pandas.pydata.org/docs/user_guide/io.html#table-schema>`__ for
    conversion types.
    Timedeltas as converted to ISO8601 duration format with
    9 decimal places after the seconds field for nanosecond precision.

    Categoricals are converted to the `any` dtype, and use the `enum` field
    constraint to list the allowed values. The `ordered` attribute is included
    in an `ordered` field.

    Examples
    --------
    >>> df = pd.DataFrame(
    ...     {'A': [1, 2, 3],
    ...      'B': ['a', 'b', 'c'],
    ...      'C': pd.date_range('2016-01-01', freq='d', periods=3),
    ...     }, index=pd.Index(range(3), name='idx'))
    >>> build_table_schema(df)
    {'fields': [{'name': 'idx', 'type': 'integer'},
    {'name': 'A', 'type': 'integer'},
    {'name': 'B', 'type': 'string'},
    {'name': 'C', 'type': 'datetime'}],
    'pandas_version': '0.20.0',
    'primaryKey': ['idx']}
    """
    if index is True:
        data = set_default_names(data)

    schema: Dict[str, Any] = {}
    fields = []

    if index:
        if data.index.nlevels > 1:
            data.index = cast("MultiIndex", data.index)
            for level, name in zip(data.index.levels, data.index.names):
                new_field = convert_pandas_type_to_json_field(level)
                new_field["name"] = name
                fields.append(new_field)
        else:
            fields.append(convert_pandas_type_to_json_field(data.index))

    if data.ndim > 1:
        for column, s in data.items():
            fields.append(convert_pandas_type_to_json_field(s))
    else:
        fields.append(convert_pandas_type_to_json_field(data))

    schema["fields"] = fields
    if index and data.index.is_unique and primary_key is None:
        if data.index.nlevels == 1:
            schema["primaryKey"] = [data.index.name]
        else:
            schema["primaryKey"] = data.index.names
    elif primary_key is not None:
        schema["primaryKey"] = primary_key

    if version:
        schema["pandas_version"] = "0.20.0"
    return schema


def parse_table_schema(json, precise_float):
    """
    Builds a DataFrame from a given schema

    Parameters
    ----------
    json :
        A JSON table schema
    precise_float : boolean
        Flag controlling precision when decoding string to double values, as
        dictated by ``read_json``

    Returns
    -------
    df : DataFrame

    Raises
    ------
    NotImplementedError
        If the JSON table schema contains either timezone or timedelta data

    Notes
    -----
        Because :func:`DataFrame.to_json` uses the string 'index' to denote a
        name-less :class:`Index`, this function sets the name of the returned
        :class:`DataFrame` to ``None`` when said string is encountered with a
        normal :class:`Index`. For a :class:`MultiIndex`, the same limitation
        applies to any strings beginning with 'level_'. Therefore, an
        :class:`Index` name of 'index'  and :class:`MultiIndex` names starting
        with 'level_' are not supported.

    See Also
    --------
    build_table_schema : Inverse function.
    pandas.read_json
    """
    table = loads(json, precise_float=precise_float)
    col_order = [field["name"] for field in table["schema"]["fields"]]
    df = DataFrame(table["data"], columns=col_order)[col_order]

    dtypes = {
        field["name"]: convert_json_field_to_pandas_type(field)
        for field in table["schema"]["fields"]
    }

    # Cannot directly use as_type with timezone data on object; raise for now
    if any(str(x).startswith("datetime64[ns, ") for x in dtypes.values()):
        raise NotImplementedError('table="orient" can not yet read timezone data')

    # No ISO constructor for Timedelta as of yet, so need to raise
    if "timedelta64" in dtypes.values():
        raise NotImplementedError(
            'table="orient" can not yet read ISO-formatted Timedelta data'
        )

    df = df.astype(dtypes)

    if "primaryKey" in table["schema"]:
        df = df.set_index(table["schema"]["primaryKey"])
        if len(df.index.names) == 1:
            if df.index.name == "index":
                df.index.name = None
        else:
            df.index.names = [
                None if x.startswith("level_") else x for x in df.index.names
            ]

    return df