Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

alkaline-ml / pandas   python

Repository URL to install this package:

Version: 1.1.1 

/ io / orc.py

""" orc compat """

import distutils
from typing import TYPE_CHECKING, List, Optional

from pandas._typing import FilePathOrBuffer

from pandas.io.common import get_filepath_or_buffer

if TYPE_CHECKING:
    from pandas import DataFrame


def read_orc(
    path: FilePathOrBuffer, columns: Optional[List[str]] = None, **kwargs,
) -> "DataFrame":
    """
    Load an ORC object from the file path, returning a DataFrame.

    .. versionadded:: 1.0.0

    Parameters
    ----------
    path : str, path object or file-like object
        Any valid string path is acceptable. The string could be a URL. Valid
        URL schemes include http, ftp, s3, and file. For file URLs, a host is
        expected. A local file could be:
        ``file://localhost/path/to/table.orc``.

        If you want to pass in a path object, pandas accepts any
        ``os.PathLike``.

        By file-like object, we refer to objects with a ``read()`` method,
        such as a file handler (e.g. via builtin ``open`` function)
        or ``StringIO``.
    columns : list, default None
        If not None, only these columns will be read from the file.
    **kwargs
        Any additional kwargs are passed to pyarrow.

    Returns
    -------
    DataFrame
    """
    # we require a newer version of pyarrow than we support for parquet
    import pyarrow

    if distutils.version.LooseVersion(pyarrow.__version__) < "0.13.0":
        raise ImportError("pyarrow must be >= 0.13.0 for read_orc")

    import pyarrow.orc

    path, _, _, _ = get_filepath_or_buffer(path)
    orc_file = pyarrow.orc.ORCFile(path)
    result = orc_file.read(columns=columns, **kwargs).to_pandas()
    return result