import warnings
import numpy as np
import pytest
import pandas as pd
from .base import BaseExtensionTests
class BaseDtypeTests(BaseExtensionTests):
"""Base class for ExtensionDtype classes"""
def test_name(self, dtype):
assert isinstance(dtype.name, str)
def test_kind(self, dtype):
valid = set("biufcmMOSUV")
assert dtype.kind in valid
def test_construct_from_string_own_name(self, dtype):
result = dtype.construct_from_string(dtype.name)
assert type(result) is type(dtype)
# check OK as classmethod
result = type(dtype).construct_from_string(dtype.name)
assert type(result) is type(dtype)
def test_is_dtype_from_name(self, dtype):
result = type(dtype).is_dtype(dtype.name)
assert result is True
def test_is_dtype_unboxes_dtype(self, data, dtype):
assert dtype.is_dtype(data) is True
def test_is_dtype_from_self(self, dtype):
result = type(dtype).is_dtype(dtype)
assert result is True
def test_is_dtype_other_input(self, dtype):
assert dtype.is_dtype([1, 2, 3]) is False
def test_is_not_string_type(self, dtype):
return not pd.api.types.is_string_dtype(dtype)
def test_is_not_object_type(self, dtype):
return not pd.api.types.is_object_dtype(dtype)
def test_eq_with_str(self, dtype):
assert dtype == dtype.name
assert dtype != dtype.name + "-suffix"
def test_eq_with_numpy_object(self, dtype):
assert dtype != np.dtype("object")
def test_eq_with_self(self, dtype):
assert dtype == dtype
assert dtype != object()
def test_array_type(self, data, dtype):
assert dtype.construct_array_type() is type(data)
def test_check_dtype(self, data):
dtype = data.dtype
# check equivalency for using .dtypes
df = pd.DataFrame(
{"A": pd.Series(data, dtype=dtype), "B": data, "C": "foo", "D": 1}
)
# TODO(numpy-1.20): This warnings filter and if block can be removed
# once we require numpy>=1.20
with warnings.catch_warnings():
warnings.simplefilter("ignore", DeprecationWarning)
result = df.dtypes == str(dtype)
# NumPy>=1.20.0, but not pandas.compat.numpy till there
# is a wheel available with this change.
try:
new_numpy_behavior = np.dtype("int64") != "Int64"
except TypeError:
new_numpy_behavior = True
if dtype.name == "Int64" and not new_numpy_behavior:
expected = pd.Series([True, True, False, True], index=list("ABCD"))
else:
expected = pd.Series([True, True, False, False], index=list("ABCD"))
self.assert_series_equal(result, expected)
expected = pd.Series([True, True, False, False], index=list("ABCD"))
result = df.dtypes.apply(str) == str(dtype)
self.assert_series_equal(result, expected)
def test_hashable(self, dtype):
hash(dtype) # no error
def test_str(self, dtype):
assert str(dtype) == dtype.name
def test_eq(self, dtype):
assert dtype == dtype.name
assert dtype != "anonther_type"
def test_construct_from_string(self, dtype):
dtype_instance = type(dtype).construct_from_string(dtype.name)
assert isinstance(dtype_instance, type(dtype))
def test_construct_from_string_another_type_raises(self, dtype):
msg = f"Cannot construct a '{type(dtype).__name__}' from 'another_type'"
with pytest.raises(TypeError, match=msg):
type(dtype).construct_from_string("another_type")
def test_construct_from_string_wrong_type_raises(self, dtype):
with pytest.raises(
TypeError,
match="'construct_from_string' expects a string, got <class 'int'>",
):
type(dtype).construct_from_string(0)
def test_get_common_dtype(self, dtype):
# in practice we will not typically call this with a 1-length list
# (we shortcut to just use that dtype as the common dtype), but
# still testing as good practice to have this working (and it is the
# only case we can test in general)
assert dtype._get_common_dtype([dtype]) == dtype