Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

alkaline-ml / pandas   python

Repository URL to install this package:

Version: 1.1.1 

/ tests / extension / base / getitem.py

import numpy as np
import pytest

import pandas as pd

from .base import BaseExtensionTests


class BaseGetitemTests(BaseExtensionTests):
    """Tests for ExtensionArray.__getitem__."""

    def test_iloc_series(self, data):
        ser = pd.Series(data)
        result = ser.iloc[:4]
        expected = pd.Series(data[:4])
        self.assert_series_equal(result, expected)

        result = ser.iloc[[0, 1, 2, 3]]
        self.assert_series_equal(result, expected)

    def test_iloc_frame(self, data):
        df = pd.DataFrame({"A": data, "B": np.arange(len(data), dtype="int64")})
        expected = pd.DataFrame({"A": data[:4]})

        # slice -> frame
        result = df.iloc[:4, [0]]
        self.assert_frame_equal(result, expected)

        # sequence -> frame
        result = df.iloc[[0, 1, 2, 3], [0]]
        self.assert_frame_equal(result, expected)

        expected = pd.Series(data[:4], name="A")

        # slice -> series
        result = df.iloc[:4, 0]
        self.assert_series_equal(result, expected)

        # sequence -> series
        result = df.iloc[:4, 0]
        self.assert_series_equal(result, expected)

        # GH#32959 slice columns with step
        result = df.iloc[:, ::2]
        self.assert_frame_equal(result, df[["A"]])
        result = df[["B", "A"]].iloc[:, ::2]
        self.assert_frame_equal(result, df[["B"]])

    def test_iloc_frame_single_block(self, data):
        # GH#32959 null slice along index, slice along columns with single-block
        df = pd.DataFrame({"A": data})

        result = df.iloc[:, :]
        self.assert_frame_equal(result, df)

        result = df.iloc[:, :1]
        self.assert_frame_equal(result, df)

        result = df.iloc[:, :2]
        self.assert_frame_equal(result, df)

        result = df.iloc[:, ::2]
        self.assert_frame_equal(result, df)

        result = df.iloc[:, 1:2]
        self.assert_frame_equal(result, df.iloc[:, :0])

        result = df.iloc[:, -1:]
        self.assert_frame_equal(result, df)

    def test_loc_series(self, data):
        ser = pd.Series(data)
        result = ser.loc[:3]
        expected = pd.Series(data[:4])
        self.assert_series_equal(result, expected)

        result = ser.loc[[0, 1, 2, 3]]
        self.assert_series_equal(result, expected)

    def test_loc_frame(self, data):
        df = pd.DataFrame({"A": data, "B": np.arange(len(data), dtype="int64")})
        expected = pd.DataFrame({"A": data[:4]})

        # slice -> frame
        result = df.loc[:3, ["A"]]
        self.assert_frame_equal(result, expected)

        # sequence -> frame
        result = df.loc[[0, 1, 2, 3], ["A"]]
        self.assert_frame_equal(result, expected)

        expected = pd.Series(data[:4], name="A")

        # slice -> series
        result = df.loc[:3, "A"]
        self.assert_series_equal(result, expected)

        # sequence -> series
        result = df.loc[:3, "A"]
        self.assert_series_equal(result, expected)

    def test_loc_iloc_frame_single_dtype(self, data):
        # GH#27110 bug in ExtensionBlock.iget caused df.iloc[n] to incorrectly
        #  return a scalar
        df = pd.DataFrame({"A": data})
        expected = pd.Series([data[2]], index=["A"], name=2, dtype=data.dtype)

        result = df.loc[2]
        self.assert_series_equal(result, expected)

        expected = pd.Series(
            [data[-1]], index=["A"], name=len(data) - 1, dtype=data.dtype
        )
        result = df.iloc[-1]
        self.assert_series_equal(result, expected)

    def test_getitem_scalar(self, data):
        result = data[0]
        assert isinstance(result, data.dtype.type)

        result = pd.Series(data)[0]
        assert isinstance(result, data.dtype.type)

    def test_getitem_scalar_na(self, data_missing, na_cmp, na_value):
        result = data_missing[0]
        assert na_cmp(result, na_value)

    def test_getitem_empty(self, data):
        # Indexing with empty list
        result = data[[]]
        assert len(result) == 0
        assert isinstance(result, type(data))

        expected = data[np.array([], dtype="int64")]
        self.assert_extension_array_equal(result, expected)

    def test_getitem_mask(self, data):
        # Empty mask, raw array
        mask = np.zeros(len(data), dtype=bool)
        result = data[mask]
        assert len(result) == 0
        assert isinstance(result, type(data))

        # Empty mask, in series
        mask = np.zeros(len(data), dtype=bool)
        result = pd.Series(data)[mask]
        assert len(result) == 0
        assert result.dtype == data.dtype

        # non-empty mask, raw array
        mask[0] = True
        result = data[mask]
        assert len(result) == 1
        assert isinstance(result, type(data))

        # non-empty mask, in series
        result = pd.Series(data)[mask]
        assert len(result) == 1
        assert result.dtype == data.dtype

    def test_getitem_mask_raises(self, data):
        mask = np.array([True, False])
        with pytest.raises(IndexError):
            data[mask]

        mask = pd.array(mask, dtype="boolean")
        with pytest.raises(IndexError):
            data[mask]

    def test_getitem_boolean_array_mask(self, data):
        mask = pd.array(np.zeros(data.shape, dtype="bool"), dtype="boolean")
        result = data[mask]
        assert len(result) == 0
        assert isinstance(result, type(data))

        result = pd.Series(data)[mask]
        assert len(result) == 0
        assert result.dtype == data.dtype

        mask[:5] = True
        expected = data.take([0, 1, 2, 3, 4])
        result = data[mask]
        self.assert_extension_array_equal(result, expected)

        expected = pd.Series(expected)
        result = pd.Series(data)[mask]
        self.assert_series_equal(result, expected)

    def test_getitem_boolean_na_treated_as_false(self, data):
        # https://github.com/pandas-dev/pandas/issues/31503
        mask = pd.array(np.zeros(data.shape, dtype="bool"), dtype="boolean")
        mask[:2] = pd.NA
        mask[2:4] = True

        result = data[mask]
        expected = data[mask.fillna(False)]

        self.assert_extension_array_equal(result, expected)

        s = pd.Series(data)

        result = s[mask]
        expected = s[mask.fillna(False)]

        self.assert_series_equal(result, expected)

    @pytest.mark.parametrize(
        "idx",
        [[0, 1, 2], pd.array([0, 1, 2], dtype="Int64"), np.array([0, 1, 2])],
        ids=["list", "integer-array", "numpy-array"],
    )
    def test_getitem_integer_array(self, data, idx):
        result = data[idx]
        assert len(result) == 3
        assert isinstance(result, type(data))
        expected = data.take([0, 1, 2])
        self.assert_extension_array_equal(result, expected)

        expected = pd.Series(expected)
        result = pd.Series(data)[idx]
        self.assert_series_equal(result, expected)

    @pytest.mark.parametrize(
        "idx",
        [[0, 1, 2, pd.NA], pd.array([0, 1, 2, pd.NA], dtype="Int64")],
        ids=["list", "integer-array"],
    )
    def test_getitem_integer_with_missing_raises(self, data, idx):
        msg = "Cannot index with an integer indexer containing NA values"
        with pytest.raises(ValueError, match=msg):
            data[idx]

        # FIXME: dont leave commented-out
        # TODO: this raises KeyError about labels not found (it tries label-based)
        # import pandas._testing as tm
        # s = pd.Series(data, index=[tm.rands(4) for _ in range(len(data))])
        # with pytest.raises(ValueError, match=msg):
        #    s[idx]

    def test_getitem_slice(self, data):
        # getitem[slice] should return an array
        result = data[slice(0)]  # empty
        assert isinstance(result, type(data))

        result = data[slice(1)]  # scalar
        assert isinstance(result, type(data))

    def test_get(self, data):
        # GH 20882
        s = pd.Series(data, index=[2 * i for i in range(len(data))])
        assert s.get(4) == s.iloc[2]

        result = s.get([4, 6])
        expected = s.iloc[[2, 3]]
        self.assert_series_equal(result, expected)

        result = s.get(slice(2))
        expected = s.iloc[[0, 1]]
        self.assert_series_equal(result, expected)

        assert s.get(-1) is None
        assert s.get(s.index.max() + 1) is None

        s = pd.Series(data[:6], index=list("abcdef"))
        assert s.get("c") == s.iloc[2]

        result = s.get(slice("b", "d"))
        expected = s.iloc[[1, 2, 3]]
        self.assert_series_equal(result, expected)

        result = s.get("Z")
        assert result is None

        assert s.get(4) == s.iloc[4]
        assert s.get(-1) == s.iloc[-1]
        assert s.get(len(s)) is None

        # GH 21257
        s = pd.Series(data)
        s2 = s[::2]
        assert s2.get(1) is None

    def test_take_sequence(self, data):
        result = pd.Series(data)[[0, 1, 3]]
        assert result.iloc[0] == data[0]
        assert result.iloc[1] == data[1]
        assert result.iloc[2] == data[3]

    def test_take(self, data, na_value, na_cmp):
        result = data.take([0, -1])
        assert result.dtype == data.dtype
        assert result[0] == data[0]
        assert result[1] == data[-1]

        result = data.take([0, -1], allow_fill=True, fill_value=na_value)
        assert result[0] == data[0]
        assert na_cmp(result[1], na_value)

        with pytest.raises(IndexError, match="out of bounds"):
            data.take([len(data) + 1])

    def test_take_empty(self, data, na_value, na_cmp):
        empty = data[:0]

        result = empty.take([-1], allow_fill=True)
        assert na_cmp(result[0], na_value)

        with pytest.raises(IndexError):
            empty.take([-1])

        with pytest.raises(IndexError, match="cannot do a non-empty take"):
            empty.take([0, 1])

    def test_take_negative(self, data):
        # https://github.com/pandas-dev/pandas/issues/20640
        n = len(data)
        result = data.take([0, -n, n - 1, -1])
        expected = data.take([0, 0, n - 1, n - 1])
        self.assert_extension_array_equal(result, expected)

    def test_take_non_na_fill_value(self, data_missing):
        fill_value = data_missing[1]  # valid
        na = data_missing[0]

        array = data_missing._from_sequence(
            [na, fill_value, na], dtype=data_missing.dtype
        )
        result = array.take([-1, 1], fill_value=fill_value, allow_fill=True)
        expected = array.take([1, 1])
        self.assert_extension_array_equal(result, expected)

    def test_take_pandas_style_negative_raises(self, data, na_value):
        with pytest.raises(ValueError):
            data.take([0, -2], fill_value=na_value, allow_fill=True)

    @pytest.mark.parametrize("allow_fill", [True, False])
    def test_take_out_of_bounds_raises(self, data, allow_fill):
        arr = data[:3]
        with pytest.raises(IndexError):
            arr.take(np.asarray([0, 3]), allow_fill=allow_fill)

    def test_take_series(self, data):
        s = pd.Series(data)
        result = s.take([0, -1])
        expected = pd.Series(
            data._from_sequence([data[0], data[len(data) - 1]], dtype=s.dtype),
            index=[0, len(data) - 1],
        )
        self.assert_series_equal(result, expected)

    def test_reindex(self, data, na_value):
        s = pd.Series(data)
        result = s.reindex([0, 1, 3])
        expected = pd.Series(data.take([0, 1, 3]), index=[0, 1, 3])
        self.assert_series_equal(result, expected)

        n = len(data)
        result = s.reindex([-1, 0, n])
        expected = pd.Series(
            data._from_sequence([na_value, data[0], na_value], dtype=s.dtype),
            index=[-1, 0, n],
        )
        self.assert_series_equal(result, expected)

        result = s.reindex([n, n + 1])
        expected = pd.Series(
            data._from_sequence([na_value, na_value], dtype=s.dtype), index=[n, n + 1]
        )
        self.assert_series_equal(result, expected)

    def test_reindex_non_na_fill_value(self, data_missing):
        valid = data_missing[1]
        na = data_missing[0]

        array = data_missing._from_sequence([na, valid], dtype=data_missing.dtype)
        ser = pd.Series(array)
        result = ser.reindex([0, 1, 2], fill_value=valid)
        expected = pd.Series(
            data_missing._from_sequence([na, valid, valid], dtype=data_missing.dtype)
        )

        self.assert_series_equal(result, expected)

    def test_loc_len1(self, data):
        # see GH-27785 take_nd with indexer of len 1 resulting in wrong ndim
        df = pd.DataFrame({"A": data})
        res = df.loc[[0], "A"]
        assert res._mgr._block.ndim == 1

    def test_item(self, data):
        # https://github.com/pandas-dev/pandas/pull/30175
        s = pd.Series(data)
        result = s[:1].item()
        assert result == data[0]

        msg = "can only convert an array of size 1 to a Python scalar"
        with pytest.raises(ValueError, match=msg):
            s[:0].item()

        with pytest.raises(ValueError, match=msg):
            s.item()