from datetime import datetime
import numpy as np
from pandas import DataFrame, DatetimeIndex, Series, date_range
import pandas._testing as tm
from pandas.tseries import offsets
class TestAsFreq:
def test_asfreq(self, datetime_frame):
offset_monthly = datetime_frame.asfreq(offsets.BMonthEnd())
rule_monthly = datetime_frame.asfreq("BM")
tm.assert_almost_equal(offset_monthly["A"], rule_monthly["A"])
filled = rule_monthly.asfreq("B", method="pad") # noqa
# TODO: actually check that this worked.
# don't forget!
filled_dep = rule_monthly.asfreq("B", method="pad") # noqa
# test does not blow up on length-0 DataFrame
zero_length = datetime_frame.reindex([])
result = zero_length.asfreq("BM")
assert result is not zero_length
def test_asfreq_datetimeindex(self):
df = DataFrame(
{"A": [1, 2, 3]},
index=[datetime(2011, 11, 1), datetime(2011, 11, 2), datetime(2011, 11, 3)],
)
df = df.asfreq("B")
assert isinstance(df.index, DatetimeIndex)
ts = df["A"].asfreq("B")
assert isinstance(ts.index, DatetimeIndex)
def test_asfreq_fillvalue(self):
# test for fill value during upsampling, related to issue 3715
# setup
rng = date_range("1/1/2016", periods=10, freq="2S")
ts = Series(np.arange(len(rng)), index=rng)
df = DataFrame({"one": ts})
# insert pre-existing missing value
df.loc["2016-01-01 00:00:08", "one"] = None
actual_df = df.asfreq(freq="1S", fill_value=9.0)
expected_df = df.asfreq(freq="1S").fillna(9.0)
expected_df.loc["2016-01-01 00:00:08", "one"] = None
tm.assert_frame_equal(expected_df, actual_df)
expected_series = ts.asfreq(freq="1S").fillna(9.0)
actual_series = ts.asfreq(freq="1S", fill_value=9.0)
tm.assert_series_equal(expected_series, actual_series)