Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

alkaline-ml / pandas   python

Repository URL to install this package:

Version: 1.1.1 

/ tests / frame / methods / test_clip.py

import numpy as np
import pytest

import pandas as pd
from pandas import DataFrame, Series
import pandas._testing as tm


class TestDataFrameClip:
    def test_clip(self, float_frame):
        median = float_frame.median().median()
        original = float_frame.copy()

        double = float_frame.clip(upper=median, lower=median)
        assert not (double.values != median).any()

        # Verify that float_frame was not changed inplace
        assert (float_frame.values == original.values).all()

    def test_inplace_clip(self, float_frame):
        # GH#15388
        median = float_frame.median().median()
        frame_copy = float_frame.copy()

        return_value = frame_copy.clip(upper=median, lower=median, inplace=True)
        assert return_value is None
        assert not (frame_copy.values != median).any()

    def test_dataframe_clip(self):
        # GH#2747
        df = DataFrame(np.random.randn(1000, 2))

        for lb, ub in [(-1, 1), (1, -1)]:
            clipped_df = df.clip(lb, ub)

            lb, ub = min(lb, ub), max(ub, lb)
            lb_mask = df.values <= lb
            ub_mask = df.values >= ub
            mask = ~lb_mask & ~ub_mask
            assert (clipped_df.values[lb_mask] == lb).all()
            assert (clipped_df.values[ub_mask] == ub).all()
            assert (clipped_df.values[mask] == df.values[mask]).all()

    def test_clip_mixed_numeric(self):
        # TODO(jreback)
        # clip on mixed integer or floats
        # with integer clippers coerces to float
        df = DataFrame({"A": [1, 2, 3], "B": [1.0, np.nan, 3.0]})
        result = df.clip(1, 2)
        expected = DataFrame({"A": [1, 2, 2], "B": [1.0, np.nan, 2.0]})
        tm.assert_frame_equal(result, expected, check_like=True)

        # GH#24162, clipping now preserves numeric types per column
        df = DataFrame([[1, 2, 3.4], [3, 4, 5.6]], columns=["foo", "bar", "baz"])
        expected = df.dtypes
        result = df.clip(upper=3).dtypes
        tm.assert_series_equal(result, expected)

    @pytest.mark.parametrize("inplace", [True, False])
    def test_clip_against_series(self, inplace):
        # GH#6966

        df = DataFrame(np.random.randn(1000, 2))
        lb = Series(np.random.randn(1000))
        ub = lb + 1

        original = df.copy()
        clipped_df = df.clip(lb, ub, axis=0, inplace=inplace)

        if inplace:
            clipped_df = df

        for i in range(2):
            lb_mask = original.iloc[:, i] <= lb
            ub_mask = original.iloc[:, i] >= ub
            mask = ~lb_mask & ~ub_mask

            result = clipped_df.loc[lb_mask, i]
            tm.assert_series_equal(result, lb[lb_mask], check_names=False)
            assert result.name == i

            result = clipped_df.loc[ub_mask, i]
            tm.assert_series_equal(result, ub[ub_mask], check_names=False)
            assert result.name == i

            tm.assert_series_equal(clipped_df.loc[mask, i], df.loc[mask, i])

    @pytest.mark.parametrize("inplace", [True, False])
    @pytest.mark.parametrize("lower", [[2, 3, 4], np.asarray([2, 3, 4])])
    @pytest.mark.parametrize(
        "axis,res",
        [
            (0, [[2.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 7.0, 7.0]]),
            (1, [[2.0, 3.0, 4.0], [4.0, 5.0, 6.0], [5.0, 6.0, 7.0]]),
        ],
    )
    def test_clip_against_list_like(self, simple_frame, inplace, lower, axis, res):
        # GH#15390
        original = simple_frame.copy(deep=True)

        result = original.clip(lower=lower, upper=[5, 6, 7], axis=axis, inplace=inplace)

        expected = pd.DataFrame(res, columns=original.columns, index=original.index)
        if inplace:
            result = original
        tm.assert_frame_equal(result, expected, check_exact=True)

    @pytest.mark.parametrize("axis", [0, 1, None])
    def test_clip_against_frame(self, axis):
        df = DataFrame(np.random.randn(1000, 2))
        lb = DataFrame(np.random.randn(1000, 2))
        ub = lb + 1

        clipped_df = df.clip(lb, ub, axis=axis)

        lb_mask = df <= lb
        ub_mask = df >= ub
        mask = ~lb_mask & ~ub_mask

        tm.assert_frame_equal(clipped_df[lb_mask], lb[lb_mask])
        tm.assert_frame_equal(clipped_df[ub_mask], ub[ub_mask])
        tm.assert_frame_equal(clipped_df[mask], df[mask])

    def test_clip_against_unordered_columns(self):
        # GH#20911
        df1 = DataFrame(np.random.randn(1000, 4), columns=["A", "B", "C", "D"])
        df2 = DataFrame(np.random.randn(1000, 4), columns=["D", "A", "B", "C"])
        df3 = DataFrame(df2.values - 1, columns=["B", "D", "C", "A"])
        result_upper = df1.clip(lower=0, upper=df2)
        expected_upper = df1.clip(lower=0, upper=df2[df1.columns])
        result_lower = df1.clip(lower=df3, upper=3)
        expected_lower = df1.clip(lower=df3[df1.columns], upper=3)
        result_lower_upper = df1.clip(lower=df3, upper=df2)
        expected_lower_upper = df1.clip(lower=df3[df1.columns], upper=df2[df1.columns])
        tm.assert_frame_equal(result_upper, expected_upper)
        tm.assert_frame_equal(result_lower, expected_lower)
        tm.assert_frame_equal(result_lower_upper, expected_lower_upper)

    def test_clip_with_na_args(self, float_frame):
        """Should process np.nan argument as None """
        # GH#17276
        tm.assert_frame_equal(float_frame.clip(np.nan), float_frame)
        tm.assert_frame_equal(float_frame.clip(upper=np.nan, lower=np.nan), float_frame)

        # GH#19992
        df = DataFrame({"col_0": [1, 2, 3], "col_1": [4, 5, 6], "col_2": [7, 8, 9]})

        result = df.clip(lower=[4, 5, np.nan], axis=0)
        expected = DataFrame(
            {"col_0": [4, 5, np.nan], "col_1": [4, 5, np.nan], "col_2": [7, 8, np.nan]}
        )
        tm.assert_frame_equal(result, expected)

        result = df.clip(lower=[4, 5, np.nan], axis=1)
        expected = DataFrame(
            {"col_0": [4, 4, 4], "col_1": [5, 5, 6], "col_2": [np.nan, np.nan, np.nan]}
        )
        tm.assert_frame_equal(result, expected)