from datetime import datetime
import numpy as np
import pytest
import pandas as pd
from pandas import DataFrame, Index, Series, Timestamp, date_range
import pandas._testing as tm
class TestDataFrameConcat:
def test_concat_multiple_frames_dtypes(self):
# GH 2759
A = DataFrame(data=np.ones((10, 2)), columns=["foo", "bar"], dtype=np.float64)
B = DataFrame(data=np.ones((10, 2)), dtype=np.float32)
results = pd.concat((A, B), axis=1).dtypes
expected = Series(
[np.dtype("float64")] * 2 + [np.dtype("float32")] * 2,
index=["foo", "bar", 0, 1],
)
tm.assert_series_equal(results, expected)
def test_concat_multiple_tzs(self):
# GH 12467
# combining datetime tz-aware and naive DataFrames
ts1 = Timestamp("2015-01-01", tz=None)
ts2 = Timestamp("2015-01-01", tz="UTC")
ts3 = Timestamp("2015-01-01", tz="EST")
df1 = DataFrame(dict(time=[ts1]))
df2 = DataFrame(dict(time=[ts2]))
df3 = DataFrame(dict(time=[ts3]))
results = pd.concat([df1, df2]).reset_index(drop=True)
expected = DataFrame(dict(time=[ts1, ts2]), dtype=object)
tm.assert_frame_equal(results, expected)
results = pd.concat([df1, df3]).reset_index(drop=True)
expected = DataFrame(dict(time=[ts1, ts3]), dtype=object)
tm.assert_frame_equal(results, expected)
results = pd.concat([df2, df3]).reset_index(drop=True)
expected = DataFrame(dict(time=[ts2, ts3]))
tm.assert_frame_equal(results, expected)
@pytest.mark.parametrize(
"t1",
[
"2015-01-01",
pytest.param(
pd.NaT,
marks=pytest.mark.xfail(
reason="GH23037 incorrect dtype when concatenating"
),
),
],
)
def test_concat_tz_NaT(self, t1):
# GH 22796
# Concating tz-aware multicolumn DataFrames
ts1 = Timestamp(t1, tz="UTC")
ts2 = Timestamp("2015-01-01", tz="UTC")
ts3 = Timestamp("2015-01-01", tz="UTC")
df1 = DataFrame([[ts1, ts2]])
df2 = DataFrame([[ts3]])
result = pd.concat([df1, df2])
expected = DataFrame([[ts1, ts2], [ts3, pd.NaT]], index=[0, 0])
tm.assert_frame_equal(result, expected)
def test_concat_tz_not_aligned(self):
# GH 22796
ts = pd.to_datetime([1, 2]).tz_localize("UTC")
a = pd.DataFrame({"A": ts})
b = pd.DataFrame({"A": ts, "B": ts})
result = pd.concat([a, b], sort=True, ignore_index=True)
expected = pd.DataFrame(
{"A": list(ts) + list(ts), "B": [pd.NaT, pd.NaT] + list(ts)}
)
tm.assert_frame_equal(result, expected)
def test_concat_tuple_keys(self):
# GH 14438
df1 = pd.DataFrame(np.ones((2, 2)), columns=list("AB"))
df2 = pd.DataFrame(np.ones((3, 2)) * 2, columns=list("AB"))
results = pd.concat((df1, df2), keys=[("bee", "bah"), ("bee", "boo")])
expected = pd.DataFrame(
{
"A": {
("bee", "bah", 0): 1.0,
("bee", "bah", 1): 1.0,
("bee", "boo", 0): 2.0,
("bee", "boo", 1): 2.0,
("bee", "boo", 2): 2.0,
},
"B": {
("bee", "bah", 0): 1.0,
("bee", "bah", 1): 1.0,
("bee", "boo", 0): 2.0,
("bee", "boo", 1): 2.0,
("bee", "boo", 2): 2.0,
},
}
)
tm.assert_frame_equal(results, expected)
def test_concat_named_keys(self):
# GH 14252
df = pd.DataFrame({"foo": [1, 2], "bar": [0.1, 0.2]})
index = Index(["a", "b"], name="baz")
concatted_named_from_keys = pd.concat([df, df], keys=index)
expected_named = pd.DataFrame(
{"foo": [1, 2, 1, 2], "bar": [0.1, 0.2, 0.1, 0.2]},
index=pd.MultiIndex.from_product((["a", "b"], [0, 1]), names=["baz", None]),
)
tm.assert_frame_equal(concatted_named_from_keys, expected_named)
index_no_name = Index(["a", "b"], name=None)
concatted_named_from_names = pd.concat(
[df, df], keys=index_no_name, names=["baz"]
)
tm.assert_frame_equal(concatted_named_from_names, expected_named)
concatted_unnamed = pd.concat([df, df], keys=index_no_name)
expected_unnamed = pd.DataFrame(
{"foo": [1, 2, 1, 2], "bar": [0.1, 0.2, 0.1, 0.2]},
index=pd.MultiIndex.from_product((["a", "b"], [0, 1]), names=[None, None]),
)
tm.assert_frame_equal(concatted_unnamed, expected_unnamed)
def test_concat_axis_parameter(self):
# GH 14369
df1 = pd.DataFrame({"A": [0.1, 0.2]}, index=range(2))
df2 = pd.DataFrame({"A": [0.3, 0.4]}, index=range(2))
# Index/row/0 DataFrame
expected_index = pd.DataFrame({"A": [0.1, 0.2, 0.3, 0.4]}, index=[0, 1, 0, 1])
concatted_index = pd.concat([df1, df2], axis="index")
tm.assert_frame_equal(concatted_index, expected_index)
concatted_row = pd.concat([df1, df2], axis="rows")
tm.assert_frame_equal(concatted_row, expected_index)
concatted_0 = pd.concat([df1, df2], axis=0)
tm.assert_frame_equal(concatted_0, expected_index)
# Columns/1 DataFrame
expected_columns = pd.DataFrame(
[[0.1, 0.3], [0.2, 0.4]], index=[0, 1], columns=["A", "A"]
)
concatted_columns = pd.concat([df1, df2], axis="columns")
tm.assert_frame_equal(concatted_columns, expected_columns)
concatted_1 = pd.concat([df1, df2], axis=1)
tm.assert_frame_equal(concatted_1, expected_columns)
series1 = pd.Series([0.1, 0.2])
series2 = pd.Series([0.3, 0.4])
# Index/row/0 Series
expected_index_series = pd.Series([0.1, 0.2, 0.3, 0.4], index=[0, 1, 0, 1])
concatted_index_series = pd.concat([series1, series2], axis="index")
tm.assert_series_equal(concatted_index_series, expected_index_series)
concatted_row_series = pd.concat([series1, series2], axis="rows")
tm.assert_series_equal(concatted_row_series, expected_index_series)
concatted_0_series = pd.concat([series1, series2], axis=0)
tm.assert_series_equal(concatted_0_series, expected_index_series)
# Columns/1 Series
expected_columns_series = pd.DataFrame(
[[0.1, 0.3], [0.2, 0.4]], index=[0, 1], columns=[0, 1]
)
concatted_columns_series = pd.concat([series1, series2], axis="columns")
tm.assert_frame_equal(concatted_columns_series, expected_columns_series)
concatted_1_series = pd.concat([series1, series2], axis=1)
tm.assert_frame_equal(concatted_1_series, expected_columns_series)
# Testing ValueError
with pytest.raises(ValueError, match="No axis named"):
pd.concat([series1, series2], axis="something")
def test_concat_numerical_names(self):
# #15262 # #12223
df = pd.DataFrame(
{"col": range(9)},
dtype="int32",
index=(
pd.MultiIndex.from_product(
[["A0", "A1", "A2"], ["B0", "B1", "B2"]], names=[1, 2]
)
),
)
result = pd.concat((df.iloc[:2, :], df.iloc[-2:, :]))
expected = pd.DataFrame(
{"col": [0, 1, 7, 8]},
dtype="int32",
index=pd.MultiIndex.from_tuples(
[("A0", "B0"), ("A0", "B1"), ("A2", "B1"), ("A2", "B2")], names=[1, 2]
),
)
tm.assert_frame_equal(result, expected)
def test_concat_astype_dup_col(self):
# gh 23049
df = pd.DataFrame([{"a": "b"}])
df = pd.concat([df, df], axis=1)
result = df.astype("category")
expected = pd.DataFrame(
np.array(["b", "b"]).reshape(1, 2), columns=["a", "a"]
).astype("category")
tm.assert_frame_equal(result, expected)
def test_concat_datetime_datetime64_frame(self):
# #2624
rows = []
rows.append([datetime(2010, 1, 1), 1])
rows.append([datetime(2010, 1, 2), "hi"])
df2_obj = DataFrame.from_records(rows, columns=["date", "test"])
ind = date_range(start="2000/1/1", freq="D", periods=10)
df1 = DataFrame({"date": ind, "test": range(10)})
# it works!
pd.concat([df1, df2_obj])