import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
from pandas import DataFrame, Series
import pandas._testing as tm
class TestDataFrameToXArray:
@td.skip_if_no("xarray", "0.10.0")
def test_to_xarray_index_types(self, index):
if isinstance(index, pd.MultiIndex):
pytest.skip("MultiIndex is tested separately")
if len(index) == 0:
pytest.skip("Test doesn't make sense for empty index")
from xarray import Dataset
df = DataFrame(
{
"a": list("abc"),
"b": list(range(1, 4)),
"c": np.arange(3, 6).astype("u1"),
"d": np.arange(4.0, 7.0, dtype="float64"),
"e": [True, False, True],
"f": pd.Categorical(list("abc")),
"g": pd.date_range("20130101", periods=3),
"h": pd.date_range("20130101", periods=3, tz="US/Eastern"),
}
)
df.index = index[:3]
df.index.name = "foo"
df.columns.name = "bar"
result = df.to_xarray()
assert result.dims["foo"] == 3
assert len(result.coords) == 1
assert len(result.data_vars) == 8
tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
assert isinstance(result, Dataset)
# idempotency
# datetimes w/tz are preserved
# column names are lost
expected = df.copy()
expected["f"] = expected["f"].astype(object)
expected.columns.name = None
tm.assert_frame_equal(
result.to_dataframe(), expected,
)
@td.skip_if_no("xarray", min_version="0.7.0")
def test_to_xarray(self):
from xarray import Dataset
df = DataFrame(
{
"a": list("abc"),
"b": list(range(1, 4)),
"c": np.arange(3, 6).astype("u1"),
"d": np.arange(4.0, 7.0, dtype="float64"),
"e": [True, False, True],
"f": pd.Categorical(list("abc")),
"g": pd.date_range("20130101", periods=3),
"h": pd.date_range("20130101", periods=3, tz="US/Eastern"),
}
)
df.index.name = "foo"
result = df[0:0].to_xarray()
assert result.dims["foo"] == 0
assert isinstance(result, Dataset)
# available in 0.7.1
# MultiIndex
df.index = pd.MultiIndex.from_product([["a"], range(3)], names=["one", "two"])
result = df.to_xarray()
assert result.dims["one"] == 1
assert result.dims["two"] == 3
assert len(result.coords) == 2
assert len(result.data_vars) == 8
tm.assert_almost_equal(list(result.coords.keys()), ["one", "two"])
assert isinstance(result, Dataset)
result = result.to_dataframe()
expected = df.copy()
expected["f"] = expected["f"].astype(object)
expected.columns.name = None
tm.assert_frame_equal(result, expected, check_index_type=False)
class TestSeriesToXArray:
@td.skip_if_no("xarray", "0.10.0")
def test_to_xarray_index_types(self, index):
if isinstance(index, pd.MultiIndex):
pytest.skip("MultiIndex is tested separately")
from xarray import DataArray
s = Series(range(len(index)), index=index, dtype="int64")
s.index.name = "foo"
result = s.to_xarray()
repr(result)
assert len(result) == len(index)
assert len(result.coords) == 1
tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
assert isinstance(result, DataArray)
# idempotency
tm.assert_series_equal(result.to_series(), s, check_index_type=False)
@td.skip_if_no("xarray", min_version="0.7.0")
def test_to_xarray(self):
from xarray import DataArray
s = Series([], dtype=object)
s.index.name = "foo"
result = s.to_xarray()
assert len(result) == 0
assert len(result.coords) == 1
tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
assert isinstance(result, DataArray)
s = Series(range(6), dtype="int64")
s.index.name = "foo"
s.index = pd.MultiIndex.from_product(
[["a", "b"], range(3)], names=["one", "two"]
)
result = s.to_xarray()
assert len(result) == 2
tm.assert_almost_equal(list(result.coords.keys()), ["one", "two"])
assert isinstance(result, DataArray)
tm.assert_series_equal(result.to_series(), s)