Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

alkaline-ml / pandas   python

Repository URL to install this package:

Version: 1.1.1 

/ tests / groupby / test_groupby_subclass.py

from datetime import datetime

import numpy as np
import pytest

from pandas import DataFrame, Series
import pandas._testing as tm


@pytest.mark.parametrize(
    "obj",
    [
        tm.SubclassedDataFrame({"A": np.arange(0, 10)}),
        tm.SubclassedSeries(np.arange(0, 10), name="A"),
    ],
)
@pytest.mark.filterwarnings("ignore:tshift is deprecated:FutureWarning")
def test_groupby_preserves_subclass(obj, groupby_func):
    # GH28330 -- preserve subclass through groupby operations

    if isinstance(obj, Series) and groupby_func in {"corrwith"}:
        pytest.skip("Not applicable")

    grouped = obj.groupby(np.arange(0, 10))

    # Groups should preserve subclass type
    assert isinstance(grouped.get_group(0), type(obj))

    args = []
    if groupby_func in {"fillna", "nth"}:
        args.append(0)
    elif groupby_func == "corrwith":
        args.append(obj)
    elif groupby_func == "tshift":
        args.extend([0, 0])

    result1 = getattr(grouped, groupby_func)(*args)
    result2 = grouped.agg(groupby_func, *args)

    # Reduction or transformation kernels should preserve type
    slices = {"ngroup", "cumcount", "size"}
    if isinstance(obj, DataFrame) and groupby_func in slices:
        assert isinstance(result1, obj._constructor_sliced)
    else:
        assert isinstance(result1, type(obj))

    # Confirm .agg() groupby operations return same results
    if isinstance(result1, DataFrame):
        tm.assert_frame_equal(result1, result2)
    else:
        tm.assert_series_equal(result1, result2)


@pytest.mark.parametrize(
    "obj", [DataFrame, tm.SubclassedDataFrame],
)
def test_groupby_resample_preserves_subclass(obj):
    # GH28330 -- preserve subclass through groupby.resample()

    df = obj(
        {
            "Buyer": "Carl Carl Carl Carl Joe Carl".split(),
            "Quantity": [18, 3, 5, 1, 9, 3],
            "Date": [
                datetime(2013, 9, 1, 13, 0),
                datetime(2013, 9, 1, 13, 5),
                datetime(2013, 10, 1, 20, 0),
                datetime(2013, 10, 3, 10, 0),
                datetime(2013, 12, 2, 12, 0),
                datetime(2013, 9, 2, 14, 0),
            ],
        }
    )
    df = df.set_index("Date")

    # Confirm groupby.resample() preserves dataframe type
    result = df.groupby("Buyer").resample("5D").sum()
    assert isinstance(result, obj)