Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

alkaline-ml / pandas   python

Repository URL to install this package:

Version: 1.1.1 

/ tests / reshape / test_pivot_multilevel.py

import numpy as np
import pytest

import pandas as pd
from pandas import Index, MultiIndex
import pandas._testing as tm


@pytest.mark.parametrize(
    "input_index, input_columns, input_values, "
    "expected_values, expected_columns, expected_index",
    [
        (
            ["lev4"],
            "lev3",
            "values",
            [
                [0.0, np.nan],
                [np.nan, 1.0],
                [2.0, np.nan],
                [np.nan, 3.0],
                [4.0, np.nan],
                [np.nan, 5.0],
                [6.0, np.nan],
                [np.nan, 7.0],
            ],
            Index([1, 2], name="lev3"),
            Index([1, 2, 3, 4, 5, 6, 7, 8], name="lev4"),
        ),
        (
            ["lev4"],
            "lev3",
            None,
            [
                [1.0, np.nan, 1.0, np.nan, 0.0, np.nan],
                [np.nan, 1.0, np.nan, 1.0, np.nan, 1.0],
                [1.0, np.nan, 2.0, np.nan, 2.0, np.nan],
                [np.nan, 1.0, np.nan, 2.0, np.nan, 3.0],
                [2.0, np.nan, 1.0, np.nan, 4.0, np.nan],
                [np.nan, 2.0, np.nan, 1.0, np.nan, 5.0],
                [2.0, np.nan, 2.0, np.nan, 6.0, np.nan],
                [np.nan, 2.0, np.nan, 2.0, np.nan, 7.0],
            ],
            MultiIndex.from_tuples(
                [
                    ("lev1", 1),
                    ("lev1", 2),
                    ("lev2", 1),
                    ("lev2", 2),
                    ("values", 1),
                    ("values", 2),
                ],
                names=[None, "lev3"],
            ),
            Index([1, 2, 3, 4, 5, 6, 7, 8], name="lev4"),
        ),
        (
            ["lev1", "lev2"],
            "lev3",
            "values",
            [[0, 1], [2, 3], [4, 5], [6, 7]],
            Index([1, 2], name="lev3"),
            MultiIndex.from_tuples(
                [(1, 1), (1, 2), (2, 1), (2, 2)], names=["lev1", "lev2"]
            ),
        ),
        (
            ["lev1", "lev2"],
            "lev3",
            None,
            [[1, 2, 0, 1], [3, 4, 2, 3], [5, 6, 4, 5], [7, 8, 6, 7]],
            MultiIndex.from_tuples(
                [("lev4", 1), ("lev4", 2), ("values", 1), ("values", 2)],
                names=[None, "lev3"],
            ),
            MultiIndex.from_tuples(
                [(1, 1), (1, 2), (2, 1), (2, 2)], names=["lev1", "lev2"]
            ),
        ),
    ],
)
def test_pivot_list_like_index(
    input_index,
    input_columns,
    input_values,
    expected_values,
    expected_columns,
    expected_index,
):
    # GH 21425, test when index is given a list
    df = pd.DataFrame(
        {
            "lev1": [1, 1, 1, 1, 2, 2, 2, 2],
            "lev2": [1, 1, 2, 2, 1, 1, 2, 2],
            "lev3": [1, 2, 1, 2, 1, 2, 1, 2],
            "lev4": [1, 2, 3, 4, 5, 6, 7, 8],
            "values": [0, 1, 2, 3, 4, 5, 6, 7],
        }
    )

    result = df.pivot(index=input_index, columns=input_columns, values=input_values)
    expected = pd.DataFrame(
        expected_values, columns=expected_columns, index=expected_index
    )
    tm.assert_frame_equal(result, expected)


@pytest.mark.parametrize(
    "input_index, input_columns, input_values, "
    "expected_values, expected_columns, expected_index",
    [
        (
            "lev4",
            ["lev3"],
            "values",
            [
                [0.0, np.nan],
                [np.nan, 1.0],
                [2.0, np.nan],
                [np.nan, 3.0],
                [4.0, np.nan],
                [np.nan, 5.0],
                [6.0, np.nan],
                [np.nan, 7.0],
            ],
            Index([1, 2], name="lev3"),
            Index([1, 2, 3, 4, 5, 6, 7, 8], name="lev4"),
        ),
        (
            ["lev1", "lev2"],
            ["lev3"],
            "values",
            [[0, 1], [2, 3], [4, 5], [6, 7]],
            Index([1, 2], name="lev3"),
            MultiIndex.from_tuples(
                [(1, 1), (1, 2), (2, 1), (2, 2)], names=["lev1", "lev2"]
            ),
        ),
        (
            ["lev1"],
            ["lev2", "lev3"],
            "values",
            [[0, 1, 2, 3], [4, 5, 6, 7]],
            MultiIndex.from_tuples(
                [(1, 1), (1, 2), (2, 1), (2, 2)], names=["lev2", "lev3"]
            ),
            Index([1, 2], name="lev1"),
        ),
        (
            ["lev1", "lev2"],
            ["lev3", "lev4"],
            "values",
            [
                [0.0, 1.0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
                [np.nan, np.nan, 2.0, 3.0, np.nan, np.nan, np.nan, np.nan],
                [np.nan, np.nan, np.nan, np.nan, 4.0, 5.0, np.nan, np.nan],
                [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 6.0, 7.0],
            ],
            MultiIndex.from_tuples(
                [(1, 1), (2, 2), (1, 3), (2, 4), (1, 5), (2, 6), (1, 7), (2, 8)],
                names=["lev3", "lev4"],
            ),
            MultiIndex.from_tuples(
                [(1, 1), (1, 2), (2, 1), (2, 2)], names=["lev1", "lev2"]
            ),
        ),
    ],
)
def test_pivot_list_like_columns(
    input_index,
    input_columns,
    input_values,
    expected_values,
    expected_columns,
    expected_index,
):
    # GH 21425, test when columns is given a list
    df = pd.DataFrame(
        {
            "lev1": [1, 1, 1, 1, 2, 2, 2, 2],
            "lev2": [1, 1, 2, 2, 1, 1, 2, 2],
            "lev3": [1, 2, 1, 2, 1, 2, 1, 2],
            "lev4": [1, 2, 3, 4, 5, 6, 7, 8],
            "values": [0, 1, 2, 3, 4, 5, 6, 7],
        }
    )

    result = df.pivot(index=input_index, columns=input_columns, values=input_values)
    expected = pd.DataFrame(
        expected_values, columns=expected_columns, index=expected_index
    )
    tm.assert_frame_equal(result, expected)