from datetime import time, timedelta
import numpy as np
import pytest
import pandas as pd
from pandas import Series, TimedeltaIndex, isna, to_timedelta
import pandas._testing as tm
class TestTimedeltas:
def test_to_timedelta(self):
result = to_timedelta(["", ""])
assert isna(result).all()
# pass thru
result = to_timedelta(np.array([np.timedelta64(1, "s")]))
expected = pd.Index(np.array([np.timedelta64(1, "s")]))
tm.assert_index_equal(result, expected)
# Series
expected = Series([timedelta(days=1), timedelta(days=1, seconds=1)])
result = to_timedelta(Series(["1d", "1days 00:00:01"]))
tm.assert_series_equal(result, expected)
# with units
result = TimedeltaIndex(
[np.timedelta64(0, "ns"), np.timedelta64(10, "s").astype("m8[ns]")]
)
expected = to_timedelta([0, 10], unit="s")
tm.assert_index_equal(result, expected)
# arrays of various dtypes
arr = np.array([1] * 5, dtype="int64")
result = to_timedelta(arr, unit="s")
expected = TimedeltaIndex([np.timedelta64(1, "s")] * 5)
tm.assert_index_equal(result, expected)
arr = np.array([1] * 5, dtype="int64")
result = to_timedelta(arr, unit="m")
expected = TimedeltaIndex([np.timedelta64(1, "m")] * 5)
tm.assert_index_equal(result, expected)
arr = np.array([1] * 5, dtype="int64")
result = to_timedelta(arr, unit="h")
expected = TimedeltaIndex([np.timedelta64(1, "h")] * 5)
tm.assert_index_equal(result, expected)
arr = np.array([1] * 5, dtype="timedelta64[s]")
result = to_timedelta(arr)
expected = TimedeltaIndex([np.timedelta64(1, "s")] * 5)
tm.assert_index_equal(result, expected)
arr = np.array([1] * 5, dtype="timedelta64[D]")
result = to_timedelta(arr)
expected = TimedeltaIndex([np.timedelta64(1, "D")] * 5)
tm.assert_index_equal(result, expected)
def test_to_timedelta_dataframe(self):
# GH 11776
arr = np.arange(10).reshape(2, 5)
df = pd.DataFrame(np.arange(10).reshape(2, 5))
for arg in (arr, df):
with pytest.raises(TypeError, match="1-d array"):
to_timedelta(arg)
for errors in ["ignore", "raise", "coerce"]:
with pytest.raises(TypeError, match="1-d array"):
to_timedelta(arg, errors=errors)
def test_to_timedelta_invalid(self):
# bad value for errors parameter
msg = "errors must be one of"
with pytest.raises(ValueError, match=msg):
to_timedelta(["foo"], errors="never")
# these will error
msg = "invalid unit abbreviation: foo"
with pytest.raises(ValueError, match=msg):
to_timedelta([1, 2], unit="foo")
with pytest.raises(ValueError, match=msg):
to_timedelta(1, unit="foo")
# time not supported ATM
msg = (
"Value must be Timedelta, string, integer, float, timedelta or convertible"
)
with pytest.raises(ValueError, match=msg):
to_timedelta(time(second=1))
assert to_timedelta(time(second=1), errors="coerce") is pd.NaT
msg = "unit abbreviation w/o a number"
with pytest.raises(ValueError, match=msg):
to_timedelta(["foo", "bar"])
tm.assert_index_equal(
TimedeltaIndex([pd.NaT, pd.NaT]),
to_timedelta(["foo", "bar"], errors="coerce"),
)
tm.assert_index_equal(
TimedeltaIndex(["1 day", pd.NaT, "1 min"]),
to_timedelta(["1 day", "bar", "1 min"], errors="coerce"),
)
# gh-13613: these should not error because errors='ignore'
invalid_data = "apple"
assert invalid_data == to_timedelta(invalid_data, errors="ignore")
invalid_data = ["apple", "1 days"]
tm.assert_numpy_array_equal(
np.array(invalid_data, dtype=object),
to_timedelta(invalid_data, errors="ignore"),
)
invalid_data = pd.Index(["apple", "1 days"])
tm.assert_index_equal(invalid_data, to_timedelta(invalid_data, errors="ignore"))
invalid_data = Series(["apple", "1 days"])
tm.assert_series_equal(
invalid_data, to_timedelta(invalid_data, errors="ignore")
)
def test_to_timedelta_via_apply(self):
# GH 5458
expected = Series([np.timedelta64(1, "s")])
result = Series(["00:00:01"]).apply(to_timedelta)
tm.assert_series_equal(result, expected)
result = Series([to_timedelta("00:00:01")])
tm.assert_series_equal(result, expected)
def test_to_timedelta_on_missing_values(self):
# GH5438
timedelta_NaT = np.timedelta64("NaT")
actual = pd.to_timedelta(Series(["00:00:01", np.nan]))
expected = Series(
[np.timedelta64(1000000000, "ns"), timedelta_NaT], dtype="<m8[ns]"
)
tm.assert_series_equal(actual, expected)
actual = pd.to_timedelta(Series(["00:00:01", pd.NaT]))
tm.assert_series_equal(actual, expected)
actual = pd.to_timedelta(np.nan)
assert actual.value == timedelta_NaT.astype("int64")
actual = pd.to_timedelta(pd.NaT)
assert actual.value == timedelta_NaT.astype("int64")
def test_to_timedelta_float(self):
# https://github.com/pandas-dev/pandas/issues/25077
arr = np.arange(0, 1, 1e-6)[-10:]
result = pd.to_timedelta(arr, unit="s")
expected_asi8 = np.arange(999990000, int(1e9), 1000, dtype="int64")
tm.assert_numpy_array_equal(result.asi8, expected_asi8)
def test_to_timedelta_coerce_strings_unit(self):
arr = np.array([1, 2, "error"], dtype=object)
result = pd.to_timedelta(arr, unit="ns", errors="coerce")
expected = pd.to_timedelta([1, 2, pd.NaT], unit="ns")
tm.assert_index_equal(result, expected)
def test_to_timedelta_ignore_strings_unit(self):
arr = np.array([1, 2, "error"], dtype=object)
result = pd.to_timedelta(arr, unit="ns", errors="ignore")
tm.assert_numpy_array_equal(result, arr)
def test_to_timedelta_nullable_int64_dtype(self):
# GH 35574
expected = Series([timedelta(days=1), timedelta(days=2)])
result = to_timedelta(Series([1, 2], dtype="Int64"), unit="days")
tm.assert_series_equal(result, expected)
# IntegerArray Series with nulls
expected = Series([timedelta(days=1), None])
result = to_timedelta(Series([1, None], dtype="Int64"), unit="days")
tm.assert_series_equal(result, expected)