Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

alkaline-ml / scikit-learn   python

Repository URL to install this package:

/ externals / _lobpcg.py

"""
scikit-learn copy of scipy/sparse/linalg/eigen/lobpcg/lobpcg.py v1.3.0
to be deleted after scipy 1.3.0 becomes a dependency in scikit-lean
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG).

References
----------
.. [1] A. V. Knyazev (2001),
       Toward the Optimal Preconditioned Eigensolver: Locally Optimal
       Block Preconditioned Conjugate Gradient Method.
       SIAM Journal on Scientific Computing 23, no. 2,
       pp. 517-541. http://dx.doi.org/10.1137/S1064827500366124

.. [2] A. V. Knyazev, I. Lashuk, M. E. Argentati, and E. Ovchinnikov (2007),
       Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX)
       in hypre and PETSc.  https://arxiv.org/abs/0705.2626

.. [3] A. V. Knyazev's C and MATLAB implementations:
       https://bitbucket.org/joseroman/blopex
"""

from __future__ import division, print_function, absolute_import
import numpy as np
from scipy.linalg import (inv, eigh, cho_factor, cho_solve, cholesky, orth,
                          LinAlgError)
from scipy.sparse.linalg import aslinearoperator

__all__ = ['lobpcg']


def bmat(*args, **kwargs):
    import warnings
    with warnings.catch_warnings(record=True):
        warnings.filterwarnings(
            'ignore', '.*the matrix subclass is not the recommended way.*')
        return np.bmat(*args, **kwargs)


def _save(ar, fileName):
    # Used only when verbosity level > 10.
    np.savetxt(fileName, ar)


def _report_nonhermitian(M, name):
    """
    Report if `M` is not a hermitian matrix given its type.
    """
    from scipy.linalg import norm

    md = M - M.T.conj()

    nmd = norm(md, 1)
    tol = 10 * np.finfo(M.dtype).eps
    tol = max(tol, tol * norm(M, 1))
    if nmd > tol:
        print('matrix %s of the type %s is not sufficiently Hermitian:'
              % (name, M.dtype))
        print('condition: %.e < %e' % (nmd, tol))


def _as2d(ar):
    """
    If the input array is 2D return it, if it is 1D, append a dimension,
    making it a column vector.
    """
    if ar.ndim == 2:
        return ar
    else:  # Assume 1!
        aux = np.array(ar, copy=False)
        aux.shape = (ar.shape[0], 1)
        return aux


def _makeOperator(operatorInput, expectedShape):
    """Takes a dense numpy array or a sparse matrix or
    a function and makes an operator performing matrix * blockvector
    products."""
    if operatorInput is None:
        return None
    else:
        operator = aslinearoperator(operatorInput)

    if operator.shape != expectedShape:
        raise ValueError('operator has invalid shape')

    return operator


def _applyConstraints(blockVectorV, factYBY, blockVectorBY, blockVectorY):
    """Changes blockVectorV in place."""
    YBV = np.dot(blockVectorBY.T.conj(), blockVectorV)
    tmp = cho_solve(factYBY, YBV)
    blockVectorV -= np.dot(blockVectorY, tmp)


def _b_orthonormalize(B, blockVectorV, blockVectorBV=None, retInvR=False):
    """B-orthonormalize the given block vector using Cholesky."""
    normalization = blockVectorV.max(axis=0)+np.finfo(blockVectorV.dtype).eps
    blockVectorV = blockVectorV / normalization
    if blockVectorBV is None:
        if B is not None:
            blockVectorBV = B(blockVectorV)
        else:
            blockVectorBV = blockVectorV  # Shared data!!!
    else:
        blockVectorBV = blockVectorBV / normalization
    VBV = np.matmul(blockVectorV.T.conj(), blockVectorBV)
    try:
        # VBV is a Cholesky factor from now on...
        VBV = cholesky(VBV, overwrite_a=True)
        VBV = inv(VBV, overwrite_a=True)
        blockVectorV = np.matmul(blockVectorV, VBV)
        # blockVectorV = (cho_solve((VBV.T, True), blockVectorV.T)).T
        if B is not None:
            blockVectorBV = np.matmul(blockVectorBV, VBV)
            # blockVectorBV = (cho_solve((VBV.T, True), blockVectorBV.T)).T
        else:
            blockVectorBV = None
    except LinAlgError:
        # raise ValueError('Cholesky has failed')
        blockVectorV = None
        blockVectorBV = None
        VBV = None

    if retInvR:
        return blockVectorV, blockVectorBV, VBV, normalization
    else:
        return blockVectorV, blockVectorBV


def _get_indx(_lambda, num, largest):
    """Get `num` indices into `_lambda` depending on `largest` option."""
    ii = np.argsort(_lambda)
    if largest:
        ii = ii[:-num-1:-1]
    else:
        ii = ii[:num]

    return ii


def lobpcg(A, X,
           B=None, M=None, Y=None,
           tol=None, maxiter=20,
           largest=True, verbosityLevel=0,
           retLambdaHistory=False, retResidualNormsHistory=False):
    """Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG)

    LOBPCG is a preconditioned eigensolver for large symmetric positive
    definite (SPD) generalized eigenproblems.

    Parameters
    ----------
    A : {sparse matrix, dense matrix, LinearOperator}
        The symmetric linear operator of the problem, usually a
        sparse matrix.  Often called the "stiffness matrix".
    X : ndarray, float32 or float64
        Initial approximation to the ``k`` eigenvectors (non-sparse). If `A`
        has ``shape=(n,n)`` then `X` should have shape ``shape=(n,k)``.
    B : {dense matrix, sparse matrix, LinearOperator}, optional
        The right hand side operator in a generalized eigenproblem.
        By default, ``B = Identity``.  Often called the "mass matrix".
    M : {dense matrix, sparse matrix, LinearOperator}, optional
        Preconditioner to `A`; by default ``M = Identity``.
        `M` should approximate the inverse of `A`.
    Y : ndarray, float32 or float64, optional
        n-by-sizeY matrix of constraints (non-sparse), sizeY < n
        The iterations will be performed in the B-orthogonal complement
        of the column-space of Y. Y must be full rank.
    tol : scalar, optional
        Solver tolerance (stopping criterion).
        The default is ``tol=n*sqrt(eps)``.
    maxiter : int, optional
        Maximum number of iterations.  The default is ``maxiter=min(n, 20)``.
    largest : bool, optional
        When True, solve for the largest eigenvalues, otherwise the smallest.
    verbosityLevel : int, optional
        Controls solver output.  The default is ``verbosityLevel=0``.
    retLambdaHistory : bool, optional
        Whether to return eigenvalue history.  Default is False.
    retResidualNormsHistory : bool, optional
        Whether to return history of residual norms.  Default is False.

    Returns
    -------
    w : ndarray
        Array of ``k`` eigenvalues
    v : ndarray
        An array of ``k`` eigenvectors.  `v` has the same shape as `X`.
    lambdas : list of ndarray, optional
        The eigenvalue history, if `retLambdaHistory` is True.
    rnorms : list of ndarray, optional
        The history of residual norms, if `retResidualNormsHistory` is True.

    Notes
    -----
    If both ``retLambdaHistory`` and ``retResidualNormsHistory`` are True,
    the return tuple has the following format
    ``(lambda, V, lambda history, residual norms history)``.

    In the following ``n`` denotes the matrix size and ``m`` the number
    of required eigenvalues (smallest or largest).

    The LOBPCG code internally solves eigenproblems of the size ``3m`` on every
    iteration by calling the "standard" dense eigensolver, so if ``m`` is not
    small enough compared to ``n``, it does not make sense to call the LOBPCG
    code, but rather one should use the "standard" eigensolver, e.g. numpy or
    scipy function in this case.
    If one calls the LOBPCG algorithm for ``5m > n``, it will most likely break
    internally, so the code tries to call the standard function instead.

    It is not that ``n`` should be large for the LOBPCG to work, but rather the
    ratio ``n / m`` should be large. It you call LOBPCG with ``m=1``
    and ``n=10``, it works though ``n`` is small. The method is intended
    for extremely large ``n / m``, see e.g., reference [28] in
    https://arxiv.org/abs/0705.2626

    The convergence speed depends basically on two factors:

    1. How well relatively separated the seeking eigenvalues are from the rest
       of the eigenvalues. One can try to vary ``m`` to make this better.

    2. How well conditioned the problem is. This can be changed by using proper
       preconditioning. For example, a rod vibration test problem (under tests
       directory) is ill-conditioned for large ``n``, so convergence will be
       slow, unless efficient preconditioning is used. For this specific
       problem, a good simple preconditioner function would be a linear solve
       for `A`, which is easy to code since A is tridiagonal.

    References
    ----------
    .. [1] A. V. Knyazev (2001),
           Toward the Optimal Preconditioned Eigensolver: Locally Optimal
           Block Preconditioned Conjugate Gradient Method.
           SIAM Journal on Scientific Computing 23, no. 2,
           pp. 517-541. http://dx.doi.org/10.1137/S1064827500366124

    .. [2] A. V. Knyazev, I. Lashuk, M. E. Argentati, and E. Ovchinnikov
           (2007), Block Locally Optimal Preconditioned Eigenvalue Xolvers
           (BLOPEX) in hypre and PETSc. https://arxiv.org/abs/0705.2626

    .. [3] A. V. Knyazev's C and MATLAB implementations:
           https://bitbucket.org/joseroman/blopex

    Examples
    --------

    Solve ``A x = lambda x`` with constraints and preconditioning.

    >>> import numpy as np
    >>> from scipy.sparse import spdiags, issparse
    >>> from scipy.sparse.linalg import lobpcg, LinearOperator
    >>> n = 100
    >>> vals = np.arange(1, n + 1)
    >>> A = spdiags(vals, 0, n, n)
    >>> A.toarray()
    array([[  1.,   0.,   0., ...,   0.,   0.,   0.],
           [  0.,   2.,   0., ...,   0.,   0.,   0.],
           [  0.,   0.,   3., ...,   0.,   0.,   0.],
           ...,
           [  0.,   0.,   0., ...,  98.,   0.,   0.],
           [  0.,   0.,   0., ...,   0.,  99.,   0.],
           [  0.,   0.,   0., ...,   0.,   0., 100.]])

    Constraints:

    >>> Y = np.eye(n, 3)

    Initial guess for eigenvectors, should have linearly independent
    columns. Column dimension = number of requested eigenvalues.

    >>> X = np.random.rand(n, 3)

    Preconditioner in the inverse of A in this example:

    >>> invA = spdiags([1./vals], 0, n, n)

    The preconditiner must be defined by a function:

    >>> def precond( x ):
    ...     return invA @ x

    The argument x of the preconditioner function is a matrix inside `lobpcg`,
    thus the use of matrix-matrix product ``@``.

    The preconditioner function is passed to lobpcg as a `LinearOperator`:

    >>> M = LinearOperator(matvec=precond, matmat=precond,
    ...                    shape=(n, n), dtype=float)

    Let us now solve the eigenvalue problem for the matrix A:

    >>> eigenvalues, _ = lobpcg(A, X, Y=Y, M=M, largest=False)
    >>> eigenvalues
    array([4., 5., 6.])

    Note that the vectors passed in Y are the eigenvectors of the 3 smallest
    eigenvalues. The results returned are orthogonal to those.

    """
    blockVectorX = X
    blockVectorY = Y
    residualTolerance = tol
    maxIterations = maxiter

    if blockVectorY is not None:
        sizeY = blockVectorY.shape[1]
    else:
        sizeY = 0

    # Block size.
    if len(blockVectorX.shape) != 2:
        raise ValueError('expected rank-2 array for argument X')

    n, sizeX = blockVectorX.shape

    if verbosityLevel:
        aux = "Solving "
        if B is None:
            aux += "standard"
        else:
            aux += "generalized"
        aux += " eigenvalue problem with"
        if M is None:
            aux += "out"
        aux += " preconditioning\n\n"
        aux += "matrix size %d\n" % n
        aux += "block size %d\n\n" % sizeX
        if blockVectorY is None:
            aux += "No constraints\n\n"
        else:
            if sizeY > 1:
                aux += "%d constraints\n\n" % sizeY
            else:
                aux += "%d constraint\n\n" % sizeY
        print(aux)

    A = _makeOperator(A, (n, n))
    B = _makeOperator(B, (n, n))
    M = _makeOperator(M, (n, n))

    if (n - sizeY) < (5 * sizeX):
        # warn('The problem size is small compared to the block size.' \
        #        ' Using dense eigensolver instead of LOBPCG.')
Loading ...