Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

alkaline-ml / scikit-learn   python

Repository URL to install this package:

/ multiclass.py

"""
Multiclass and multilabel classification strategies
===================================================

This module implements multiclass learning algorithms:
    - one-vs-the-rest / one-vs-all
    - one-vs-one
    - error correcting output codes

The estimators provided in this module are meta-estimators: they require a base
estimator to be provided in their constructor. For example, it is possible to
use these estimators to turn a binary classifier or a regressor into a
multiclass classifier. It is also possible to use these estimators with
multiclass estimators in the hope that their accuracy or runtime performance
improves.

All classifiers in scikit-learn implement multiclass classification; you
only need to use this module if you want to experiment with custom multiclass
strategies.

The one-vs-the-rest meta-classifier also implements a `predict_proba` method,
so long as such a method is implemented by the base classifier. This method
returns probabilities of class membership in both the single label and
multilabel case.  Note that in the multilabel case, probabilities are the
marginal probability that a given sample falls in the given class. As such, in
the multilabel case the sum of these probabilities over all possible labels
for a given sample *will not* sum to unity, as they do in the single label
case.
"""

# Author: Mathieu Blondel <mathieu@mblondel.org>
# Author: Hamzeh Alsalhi <93hamsal@gmail.com>
#
# License: BSD 3 clause

import array
import numpy as np
import warnings
import scipy.sparse as sp
import itertools

from .base import BaseEstimator, ClassifierMixin, clone, is_classifier
from .base import MultiOutputMixin
from .base import MetaEstimatorMixin, is_regressor
from .preprocessing import LabelBinarizer
from .metrics.pairwise import euclidean_distances
from .utils import check_random_state
from .utils.validation import _num_samples
from .utils.validation import check_is_fitted
from .utils.validation import check_X_y, check_array
from .utils.validation import _deprecate_positional_args
from .utils.multiclass import (_check_partial_fit_first_call,
                               check_classification_targets,
                               _ovr_decision_function)
from .utils.metaestimators import _safe_split, if_delegate_has_method
from .exceptions import NotFittedError

from joblib import Parallel, delayed

__all__ = [
    "OneVsRestClassifier",
    "OneVsOneClassifier",
    "OutputCodeClassifier",
]


def _fit_binary(estimator, X, y, classes=None):
    """Fit a single binary estimator."""
    unique_y = np.unique(y)
    if len(unique_y) == 1:
        if classes is not None:
            if y[0] == -1:
                c = 0
            else:
                c = y[0]
            warnings.warn("Label %s is present in all training examples." %
                          str(classes[c]))
        estimator = _ConstantPredictor().fit(X, unique_y)
    else:
        estimator = clone(estimator)
        estimator.fit(X, y)
    return estimator


def _partial_fit_binary(estimator, X, y):
    """Partially fit a single binary estimator."""
    estimator.partial_fit(X, y, np.array((0, 1)))
    return estimator


def _predict_binary(estimator, X):
    """Make predictions using a single binary estimator."""
    if is_regressor(estimator):
        return estimator.predict(X)
    try:
        score = np.ravel(estimator.decision_function(X))
    except (AttributeError, NotImplementedError):
        # probabilities of the positive class
        score = estimator.predict_proba(X)[:, 1]
    return score


def _check_estimator(estimator):
    """Make sure that an estimator implements the necessary methods."""
    if (not hasattr(estimator, "decision_function") and
            not hasattr(estimator, "predict_proba")):
        raise ValueError("The base estimator should implement "
                         "decision_function or predict_proba!")


class _ConstantPredictor(BaseEstimator):

    def fit(self, X, y):
        self.y_ = y
        return self

    def predict(self, X):
        check_is_fitted(self)

        return np.repeat(self.y_, X.shape[0])

    def decision_function(self, X):
        check_is_fitted(self)

        return np.repeat(self.y_, X.shape[0])

    def predict_proba(self, X):
        check_is_fitted(self)

        return np.repeat([np.hstack([1 - self.y_, self.y_])],
                         X.shape[0], axis=0)


class OneVsRestClassifier(MultiOutputMixin, ClassifierMixin,
                          MetaEstimatorMixin, BaseEstimator):
    """One-vs-the-rest (OvR) multiclass/multilabel strategy

    Also known as one-vs-all, this strategy consists in fitting one classifier
    per class. For each classifier, the class is fitted against all the other
    classes. In addition to its computational efficiency (only `n_classes`
    classifiers are needed), one advantage of this approach is its
    interpretability. Since each class is represented by one and one classifier
    only, it is possible to gain knowledge about the class by inspecting its
    corresponding classifier. This is the most commonly used strategy for
    multiclass classification and is a fair default choice.

    This strategy can also be used for multilabel learning, where a classifier
    is used to predict multiple labels for instance, by fitting on a 2-d matrix
    in which cell [i, j] is 1 if sample i has label j and 0 otherwise.

    In the multilabel learning literature, OvR is also known as the binary
    relevance method.

    Read more in the :ref:`User Guide <ovr_classification>`.

    Parameters
    ----------
    estimator : estimator object
        An estimator object implementing :term:`fit` and one of
        :term:`decision_function` or :term:`predict_proba`.

    n_jobs : int or None, optional (default=None)
        The number of jobs to use for the computation.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

        .. versionchanged:: v0.20
           `n_jobs` default changed from 1 to None

    Attributes
    ----------
    estimators_ : list of `n_classes` estimators
        Estimators used for predictions.

    classes_ : array, shape = [`n_classes`]
        Class labels.

    n_classes_ : int
        Number of classes.

    label_binarizer_ : LabelBinarizer object
        Object used to transform multiclass labels to binary labels and
        vice-versa.

    multilabel_ : boolean
        Whether a OneVsRestClassifier is a multilabel classifier.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.multiclass import OneVsRestClassifier
    >>> from sklearn.svm import SVC
    >>> X = np.array([
    ...     [10, 10],
    ...     [8, 10],
    ...     [-5, 5.5],
    ...     [-5.4, 5.5],
    ...     [-20, -20],
    ...     [-15, -20]
    ... ])
    >>> y = np.array([0, 0, 1, 1, 2, 2])
    >>> clf = OneVsRestClassifier(SVC()).fit(X, y)
    >>> clf.predict([[-19, -20], [9, 9], [-5, 5]])
    array([2, 0, 1])

    """
    @_deprecate_positional_args
    def __init__(self, estimator, *, n_jobs=None):
        self.estimator = estimator
        self.n_jobs = n_jobs

    def fit(self, X, y):
        """Fit underlying estimators.

        Parameters
        ----------
        X : (sparse) array-like of shape (n_samples, n_features)
            Data.

        y : (sparse) array-like of shape (n_samples,) or (n_samples, n_classes)
            Multi-class targets. An indicator matrix turns on multilabel
            classification.

        Returns
        -------
        self
        """
        # A sparse LabelBinarizer, with sparse_output=True, has been shown to
        # outperform or match a dense label binarizer in all cases and has also
        # resulted in less or equal memory consumption in the fit_ovr function
        # overall.
        self.label_binarizer_ = LabelBinarizer(sparse_output=True)
        Y = self.label_binarizer_.fit_transform(y)
        Y = Y.tocsc()
        self.classes_ = self.label_binarizer_.classes_
        columns = (col.toarray().ravel() for col in Y.T)
        # In cases where individual estimators are very fast to train setting
        # n_jobs > 1 in can results in slower performance due to the overhead
        # of spawning threads.  See joblib issue #112.
        self.estimators_ = Parallel(n_jobs=self.n_jobs)(delayed(_fit_binary)(
            self.estimator, X, column, classes=[
                "not %s" % self.label_binarizer_.classes_[i],
                self.label_binarizer_.classes_[i]])
            for i, column in enumerate(columns))

        return self

    @if_delegate_has_method('estimator')
    def partial_fit(self, X, y, classes=None):
        """Partially fit underlying estimators

        Should be used when memory is inefficient to train all data.
        Chunks of data can be passed in several iteration.

        Parameters
        ----------
        X : (sparse) array-like of shape (n_samples, n_features)
            Data.

        y : (sparse) array-like of shape (n_samples,) or (n_samples, n_classes)
            Multi-class targets. An indicator matrix turns on multilabel
            classification.

        classes : array, shape (n_classes, )
            Classes across all calls to partial_fit.
            Can be obtained via `np.unique(y_all)`, where y_all is the
            target vector of the entire dataset.
            This argument is only required in the first call of partial_fit
            and can be omitted in the subsequent calls.

        Returns
        -------
        self
        """
        if _check_partial_fit_first_call(self, classes):
            if not hasattr(self.estimator, "partial_fit"):
                raise ValueError(("Base estimator {0}, doesn't have "
                                 "partial_fit method").format(self.estimator))
            self.estimators_ = [clone(self.estimator) for _ in range
                                (self.n_classes_)]

            # A sparse LabelBinarizer, with sparse_output=True, has been
            # shown to outperform or match a dense label binarizer in all
            # cases and has also resulted in less or equal memory consumption
            # in the fit_ovr function overall.
            self.label_binarizer_ = LabelBinarizer(sparse_output=True)
            self.label_binarizer_.fit(self.classes_)

        if len(np.setdiff1d(y, self.classes_)):
            raise ValueError(("Mini-batch contains {0} while classes " +
                             "must be subset of {1}").format(np.unique(y),
                                                             self.classes_))

        Y = self.label_binarizer_.transform(y)
        Y = Y.tocsc()
        columns = (col.toarray().ravel() for col in Y.T)

        self.estimators_ = Parallel(n_jobs=self.n_jobs)(
            delayed(_partial_fit_binary)(estimator, X, column)
            for estimator, column in zip(self.estimators_, columns))

        return self

    def predict(self, X):
        """Predict multi-class targets using underlying estimators.

        Parameters
        ----------
        X : (sparse) array-like of shape (n_samples, n_features)
            Data.

        Returns
        -------
        y : (sparse) array-like of shape (n_samples,) or (n_samples, n_classes)
            Predicted multi-class targets.
        """
        check_is_fitted(self)

        n_samples = _num_samples(X)
        if self.label_binarizer_.y_type_ == "multiclass":
            maxima = np.empty(n_samples, dtype=float)
            maxima.fill(-np.inf)
            argmaxima = np.zeros(n_samples, dtype=int)
            for i, e in enumerate(self.estimators_):
                pred = _predict_binary(e, X)
                np.maximum(maxima, pred, out=maxima)
                argmaxima[maxima == pred] = i
            return self.classes_[argmaxima]
        else:
            if (hasattr(self.estimators_[0], "decision_function") and
                    is_classifier(self.estimators_[0])):
                thresh = 0
            else:
                thresh = .5
            indices = array.array('i')
            indptr = array.array('i', [0])
            for e in self.estimators_:
                indices.extend(np.where(_predict_binary(e, X) > thresh)[0])
                indptr.append(len(indices))
            data = np.ones(len(indices), dtype=int)
            indicator = sp.csc_matrix((data, indices, indptr),
                                      shape=(n_samples, len(self.estimators_)))
            return self.label_binarizer_.inverse_transform(indicator)
Loading ...