"""
Holds common functions for l1 solvers.
"""
import numpy as np
from statsmodels.tools.sm_exceptions import ConvergenceWarning
def qc_results(params, alpha, score, qc_tol, qc_verbose=False):
"""
Theory dictates that one of two conditions holds:
i) abs(score[i]) == alpha[i] and params[i] != 0
ii) abs(score[i]) <= alpha[i] and params[i] == 0
qc_results checks to see that (ii) holds, within qc_tol
qc_results also checks for nan or results of the wrong shape.
Parameters
----------
params : ndarray
model parameters. Not including the added variables x_added.
alpha : ndarray
regularization coefficients
score : function
Gradient of unregularized objective function
qc_tol : float
Tolerance to hold conditions (i) and (ii) to for QC check.
qc_verbose : bool
If true, print out a full QC report upon failure
Returns
-------
passed : bool
True if QC check passed
qc_dict : Dictionary
Keys are fprime, alpha, params, passed_array
Prints
------
Warning message if QC check fails.
"""
## Check for fatal errors
assert not np.isnan(params).max()
assert (params == params.ravel('F')).min(), \
"params should have already been 1-d"
## Start the theory compliance check
fprime = score(params)
k_params = len(params)
passed_array = np.array([True] * k_params)
for i in range(k_params):
if alpha[i] > 0:
# If |fprime| is too big, then something went wrong
if (abs(fprime[i]) - alpha[i]) / alpha[i] > qc_tol:
passed_array[i] = False
qc_dict = dict(
fprime=fprime, alpha=alpha, params=params, passed_array=passed_array)
passed = passed_array.min()
if not passed:
num_failed = (~passed_array).sum()
message = 'QC check did not pass for %d out of %d parameters' % (
num_failed, k_params)
message += '\nTry increasing solver accuracy or number of iterations'\
', decreasing alpha, or switch solvers'
if qc_verbose:
message += _get_verbose_addon(qc_dict)
import warnings
warnings.warn(message, ConvergenceWarning)
return passed
def _get_verbose_addon(qc_dict):
alpha = qc_dict['alpha']
params = qc_dict['params']
fprime = qc_dict['fprime']
passed_array = qc_dict['passed_array']
addon = '\n------ verbose QC printout -----------------'
addon = '\n------ Recall the problem was rescaled by 1 / nobs ---'
addon += '\n|%-10s|%-10s|%-10s|%-10s|' % (
'passed', 'alpha', 'fprime', 'param')
addon += '\n--------------------------------------------'
for i in range(len(alpha)):
addon += '\n|%-10s|%-10.3e|%-10.3e|%-10.3e|' % (
passed_array[i], alpha[i], fprime[i], params[i])
return addon
def do_trim_params(params, k_params, alpha, score, passed, trim_mode,
size_trim_tol, auto_trim_tol):
"""
Trims (set to zero) params that are zero at the theoretical minimum.
Uses heuristics to account for the solver not actually finding the minimum.
In all cases, if alpha[i] == 0, then do not trim the ith param.
In all cases, do nothing with the added variables.
Parameters
----------
params : ndarray
model parameters. Not including added variables.
k_params : Int
Number of parameters
alpha : ndarray
regularization coefficients
score : Function.
score(params) should return a 1-d vector of derivatives of the
unpenalized objective function.
passed : bool
True if the QC check passed
trim_mode : 'auto, 'size', or 'off'
If not 'off', trim (set to zero) parameters that would have been zero
if the solver reached the theoretical minimum.
If 'auto', trim params using the Theory above.
If 'size', trim params if they have very small absolute value
size_trim_tol : float or 'auto' (default = 'auto')
For use when trim_mode === 'size'
auto_trim_tol : float
For sue when trim_mode == 'auto'. Use
qc_tol : float
Print warning and do not allow auto trim when (ii) in "Theory" (above)
is violated by this much.
Returns
-------
params : ndarray
Trimmed model parameters
trimmed : ndarray of booleans
trimmed[i] == True if the ith parameter was trimmed.
"""
## Trim the small params
trimmed = [False] * k_params
if trim_mode == 'off':
trimmed = np.array([False] * k_params)
elif trim_mode == 'auto' and not passed:
import warnings
msg = "Could not trim params automatically due to failed QC check. " \
"Trimming using trim_mode == 'size' will still work."
warnings.warn(msg, ConvergenceWarning)
trimmed = np.array([False] * k_params)
elif trim_mode == 'auto' and passed:
fprime = score(params)
for i in range(k_params):
if alpha[i] != 0:
if (alpha[i] - abs(fprime[i])) / alpha[i] > auto_trim_tol:
params[i] = 0.0
trimmed[i] = True
elif trim_mode == 'size':
for i in range(k_params):
if alpha[i] != 0:
if abs(params[i]) < size_trim_tol:
params[i] = 0.0
trimmed[i] = True
else:
raise ValueError(
"trim_mode == %s, which is not recognized" % (trim_mode))
return params, np.asarray(trimmed)