import numpy as np
import numpy.testing as npt
from numpy.testing import assert_raises
from statsmodels.distributions import StepFunction, monotone_fn_inverter
class TestDistributions(object):
def test_StepFunction(self):
x = np.arange(20)
y = np.arange(20)
f = StepFunction(x, y)
npt.assert_almost_equal(f( np.array([[3.2,4.5],[24,-3.1],[3.0, 4.0]])),
[[ 3, 4], [19, 0], [2, 3]])
def test_StepFunctionBadShape(self):
x = np.arange(20)
y = np.arange(21)
assert_raises(ValueError, StepFunction, x, y)
x = np.zeros((2, 2))
y = np.zeros((2, 2))
assert_raises(ValueError, StepFunction, x, y)
def test_StepFunctionValueSideRight(self):
x = np.arange(20)
y = np.arange(20)
f = StepFunction(x, y, side='right')
npt.assert_almost_equal(f( np.array([[3.2,4.5],[24,-3.1],[3.0, 4.0]])),
[[ 3, 4], [19, 0], [3, 4]])
def test_StepFunctionRepeatedValues(self):
x = [1, 1, 2, 2, 2, 3, 3, 3, 4, 5]
y = [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
f = StepFunction(x, y)
npt.assert_almost_equal(f([1, 2, 3, 4, 5]), [0, 7, 10, 13, 14])
f2 = StepFunction(x, y, side='right')
npt.assert_almost_equal(f2([1, 2, 3, 4, 5]), [7, 10, 13, 14, 15])
def test_monotone_fn_inverter(self):
x = [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
fn = lambda x : 1./x
y = fn(np.array(x))
f = monotone_fn_inverter(fn, x)
npt.assert_array_equal(f.y, x[::-1])
npt.assert_array_equal(f.x, y[::-1])