# pylint: disable=F841
"""
unit test for GAM
Author: Luca Puggini
Created on 08/07/2015
"""
import os
import numpy as np
from numpy.testing import assert_allclose
import pandas as pd
from scipy.linalg import block_diag
import pytest
from statsmodels.tools.linalg import matrix_sqrt
from statsmodels.gam.smooth_basis import (
UnivariatePolynomialSmoother, PolynomialSmoother, BSplines,
GenericSmoothers, UnivariateCubicSplines, CyclicCubicSplines)
from statsmodels.gam.generalized_additive_model import (
GLMGam, LogitGam, make_augmented_matrix, penalized_wls)
from statsmodels.gam.gam_cross_validation.gam_cross_validation import (
MultivariateGAMCV, MultivariateGAMCVPath, _split_train_test_smoothers)
from statsmodels.gam.gam_penalties import (UnivariateGamPenalty,
MultivariateGamPenalty)
from statsmodels.gam.gam_cross_validation.cross_validators import KFold
from statsmodels.genmod.generalized_linear_model import GLM
from statsmodels.genmod.families.family import Gaussian
from statsmodels.genmod.generalized_linear_model import lm
sigmoid = np.vectorize(lambda x: 1.0 / (1.0 + np.exp(-x)))
def polynomial_sample_data():
"""A polynomial of degree 4
poly = ax^4 + bx^3 + cx^2 + dx + e
second der = 12ax^2 + 6bx + 2c
integral from -1 to 1 of second der^2 is
(288 a^2)/5 + 32 a c + 8 (3 b^2 + c^2)
the gradient of the integral is der
[576*a/5 + 32 * c, 48*b, 32*a + 16*c, 0, 0]
Returns
-------
poly : smoother instance
y : ndarray
generated function values, demeaned
"""
n = 10000
x = np.linspace(-1, 1, n)
y = 2 * x ** 3 - x
y -= y.mean()
degree = [4]
pol = PolynomialSmoother(x, degree)
return pol, y
def integral(params):
d, c, b, a = params
itg = (288 * a ** 2) / 5 + (32 * a * c) + 8 * (3 * b ** 2 + c ** 2)
itg /= 2
return itg
def grad(params):
d, c, b, a = params
grd = np.array([576 * a / 5 + 32 * c, 48 * b, 32 * a + 16 * c, 0])
grd = grd[::-1]
return grd / 2
def hessian(params):
hess = np.array([[576 / 5, 0, 32, 0],
[0, 48, 0, 0],
[32, 0, 16, 0],
[0, 0, 0, 0]
])
return hess / 2
def cost_function(params, pol, y, alpha):
# this should be the MSE or log likelihood value
lin_pred = np.dot(pol.basis, params)
gaussian = Gaussian()
expval = gaussian.link.inverse(lin_pred)
loglike = gaussian.loglike(y, expval)
# this is the vale of the GAM penalty. For the example polynomial
itg = integral(params)
# return the cost function of the GAM for the given polynomial
return loglike - alpha * itg, loglike, itg
def test_gam_penalty():
"""
test the func method of the gam penalty
:return:
"""
pol, y = polynomial_sample_data()
univ_pol = pol.smoothers[0]
alpha = 1
gp = UnivariateGamPenalty(alpha=alpha, univariate_smoother=univ_pol)
for _ in range(10):
params = np.random.randint(-2, 2, 4)
gp_score = gp.func(params)
itg = integral(params)
assert_allclose(gp_score, itg, atol=1.e-1)
def test_gam_gradient():
# test the gam gradient for the example polynomial
np.random.seed(1)
pol, y = polynomial_sample_data()
alpha = 1
smoother = pol.smoothers[0]
gp = UnivariateGamPenalty(alpha=alpha, univariate_smoother=smoother)
for _ in range(10):
params = np.random.uniform(-2, 2, 4)
params = np.array([1, 1, 1, 1])
gam_grad = gp.deriv(params)
grd = grad(params)
assert_allclose(gam_grad, grd, rtol=1.e-2, atol=1.e-2)
def test_gam_hessian():
# test the deriv2 method of the gam penalty
np.random.seed(1)
pol, y = polynomial_sample_data()
univ_pol = pol.smoothers[0]
alpha = 1
gp = UnivariateGamPenalty(alpha=alpha, univariate_smoother=univ_pol)
for _ in range(10):
params = np.random.randint(-2, 2, 5)
gam_der2 = gp.deriv2(params)
hess = hessian(params)
hess = np.flipud(hess)
hess = np.fliplr(hess)
assert_allclose(gam_der2, hess, atol=1.e-13, rtol=1.e-3)
def test_approximation():
np.random.seed(1)
poly, y = polynomial_sample_data()
alpha = 1
for _ in range(10):
params = np.random.uniform(-1, 1, 4)
cost, err, itg = cost_function(params, poly, y, alpha)
glm_gam = GLMGam(y, smoother=poly, alpha=alpha)
# TODO: why do we need pen_weight=1
gam_loglike = glm_gam.loglike(params, scale=1, pen_weight=1)
assert_allclose(err - itg, cost, rtol=1e-10)
assert_allclose(gam_loglike, cost, rtol=0.1)
def test_gam_glm():
cur_dir = os.path.dirname(os.path.abspath(__file__))
file_path = os.path.join(cur_dir, "results", "prediction_from_mgcv.csv")
data_from_r = pd.read_csv(file_path)
# dataset used to train the R model
x = data_from_r.x.values
y = data_from_r.y.values
df = [10]
degree = [3]
bsplines = BSplines(x, degree=degree, df=df, include_intercept=True)
# y_mgcv is obtained from R with the following code
# g = gam(y~s(x, k = 10, bs = "cr"), data = data, scale = 80)
y_mgcv = np.asarray(data_from_r.y_est)
alpha = 0.1 # chosen by trial and error
glm_gam = GLMGam(y, smoother=bsplines, alpha=alpha)
res_glm_gam = glm_gam.fit(method='bfgs', max_start_irls=0,
disp=1, maxiter=10000, maxfun=5000)
y_gam0 = np.dot(bsplines.basis, res_glm_gam.params)
y_gam = np.asarray(res_glm_gam.fittedvalues)
assert_allclose(y_gam, y_gam0, rtol=1e-10)
# plt.plot(x, y_gam, '.', label='gam')
# plt.plot(x, y_mgcv, '.', label='mgcv')
# plt.plot(x, y, '.', label='y')
# plt.legend()
# plt.show()
assert_allclose(y_gam, y_mgcv, atol=1.e-2)
def test_gam_discrete():
cur_dir = os.path.dirname(os.path.abspath(__file__))
file_path = os.path.join(cur_dir, "results", "prediction_from_mgcv.csv")
data_from_r = pd.read_csv(file_path)
# dataset used to train the R model
x = data_from_r.x.values
y = data_from_r.ybin.values
df = [10]
degree = [5]
bsplines = BSplines(x, degree=degree, df=df, include_intercept=True)
# y_mgcv is obtained from R with the following code
# g = gam(y~s(x, k = 10, bs = "cr"), data = data, scale = 80)
y_mgcv = data_from_r.ybin_est
alpha = 0.00002
# gp = UnivariateGamPenalty(alpha=alpha, univariate_smoother=bsplines)
# lg_gam = LogitGam(y, bsplines.basis, penal=gp)
#
lg_gam = LogitGam(y, bsplines, alpha=alpha)
res_lg_gam = lg_gam.fit(maxiter=10000)
y_gam = np.dot(bsplines.basis, res_lg_gam.params)
y_gam = sigmoid(y_gam)
y_mgcv = sigmoid(y_mgcv)
# plt.plot(x, y_gam, label='gam')
# plt.plot(x, y_mgcv, label='mgcv')
# plt.plot(x, y, '.', label='y')
# plt.ylim(-0.4, 1.4)
# plt.legend()
# plt.show()
assert_allclose(y_gam, y_mgcv, rtol=1.e-10, atol=1.e-1)
def multivariate_sample_data(seed=1):
n = 1000
x1 = np.linspace(-1, 1, n)
x2 = np.linspace(-10, 10, n)
x = np.vstack([x1, x2]).T
np.random.seed(seed)
y = x1 * x1 * x1 + x2 + np.random.normal(0, 0.01, n)
degree1 = 4
degree2 = 3
degrees = [degree1, degree2]
pol = PolynomialSmoother(x, degrees)
return x, y, pol
def test_multivariate_penalty():
alphas = [1, 2]
weights = [1, 1]
np.random.seed(1)
x, y, pol = multivariate_sample_data()
univ_pol1 = UnivariatePolynomialSmoother(x[:, 0], degree=pol.degrees[0])
univ_pol2 = UnivariatePolynomialSmoother(x[:, 1], degree=pol.degrees[1])
gp1 = UnivariateGamPenalty(alpha=alphas[0], univariate_smoother=univ_pol1)
gp2 = UnivariateGamPenalty(alpha=alphas[1], univariate_smoother=univ_pol2)
with pytest.warns(UserWarning, match="weights is currently ignored"):
mgp = MultivariateGamPenalty(multivariate_smoother=pol, alpha=alphas,
weights=weights)
for i in range(10):
params1 = np.random.randint(-3, 3, pol.smoothers[0].dim_basis)
params2 = np.random.randint(-3, 3, pol.smoothers[1].dim_basis)
params = np.concatenate([params1, params2])
c1 = gp1.func(params1)
c2 = gp2.func(params2)
c = mgp.func(params)
assert_allclose(c, c1 + c2, atol=1.e-10, rtol=1.e-10)
d1 = gp1.deriv(params1)
d2 = gp2.deriv(params2)
d12 = np.concatenate([d1, d2])
d = mgp.deriv(params)
assert_allclose(d, d12)
h1 = gp1.deriv2(params1)
h2 = gp2.deriv2(params2)
h12 = block_diag(h1, h2)
h = mgp.deriv2(params)
assert_allclose(h, h12)
def test_generic_smoother():
x, y, poly = multivariate_sample_data()
alphas = [0.4, 0.7]
weights = [1, 1] # noqa: F841
gs = GenericSmoothers(poly.x, poly.smoothers)
gam_gs = GLMGam(y, smoother=gs, alpha=alphas)
gam_gs_res = gam_gs.fit()
gam_poly = GLMGam(y, smoother=poly, alpha=alphas)
gam_poly_res = gam_poly.fit()
assert_allclose(gam_gs_res.params, gam_poly_res.params)
def test_multivariate_gam_1d_data():
cur_dir = os.path.dirname(os.path.abspath(__file__))
file_path = os.path.join(cur_dir, "results", "prediction_from_mgcv.csv")
data_from_r = pd.read_csv(file_path)
# dataset used to train the R model
x = data_from_r.x.values
y = data_from_r.y
df = [10]
degree = [3]
bsplines = BSplines(x, degree=degree, df=df)
# y_mgcv is obtained from R with the following code
# g = gam(y~s(x, k = 10, bs = "cr"), data = data, scale = 80)
y_mgcv = data_from_r.y_est
# alpha is by manually adjustment to reduce discrepancy in fittedvalues
alpha = [0.0168 * 0.0251 / 2 * 500]
gp = MultivariateGamPenalty(bsplines, alpha=alpha) # noqa: F841
glm_gam = GLMGam(y, exog=np.ones((len(y), 1)), smoother=bsplines,
alpha=alpha)
# "nm" converges to a different params, "bfgs" params are close to pirls
# res_glm_gam = glm_gam.fit(method='nm', max_start_irls=0,
# disp=1, maxiter=10000, maxfun=5000)
res_glm_gam = glm_gam.fit(method='pirls', max_start_irls=0,
disp=1, maxiter=10000)
y_gam = res_glm_gam.fittedvalues
# plt.plot(x, y_gam, '.', label='gam')
# plt.plot(x, y_mgcv, '.', label='mgcv')
# plt.plot(x, y, '.', label='y')
# plt.legend()
# plt.show()
assert_allclose(y_gam, y_mgcv, atol=0.01)
def test_multivariate_gam_cv():
# SMOKE test
# no test is performed. It only checks that there is not any runtime error
def cost(x1, x2):
return np.linalg.norm(x1 - x2) / len(x1)
cur_dir = os.path.dirname(os.path.abspath(__file__))
file_path = os.path.join(cur_dir, "results", "prediction_from_mgcv.csv")
Loading ...