r"""
Bayesian inference for generalized linear mixed models.
Currently only families without additional scale or shape parameters
are supported (binomial and Poisson).
Two estimation approaches are supported: Laplace approximation
('maximum a posteriori'), and variational Bayes (mean field
approximation to the posterior distribution).
All realizations of random effects are modeled to be mutually
independent in this implementation.
The `exog_vc` matrix is the design matrix for the random effects.
Every column of `exog_vc` corresponds to an independent realization of
a random effect. These random effects have mean zero and an unknown
standard deviation. The standard deviation parameters are constrained
to be equal within subsets of the columns. When not using formulas,
these subsets are specified through the parameter `ident`. `ident`
must have the same length as the number of columns of `exog_vc`, and
two columns whose `ident` values are equal have the same standard
deviation. When formulas are used, the columns of `exog_vc` derived
from a common formula are constrained to have the same standard
deviation.
In many applications, `exog_vc` will be sparse. A sparse matrix may
be passed when constructing a model class. If a dense matrix is
passed, it will be converted internally to a sparse matrix. There
currently is no way to avoid creating a temporary dense version of
`exog_vc` when using formulas.
Model and parameterization
--------------------------
The joint density of data and parameters factors as:
.. math::
p(y | vc, fep) p(vc | vcp) p(vcp) p(fe)
The terms :math:`p(vcp)` and :math:`p(fe)` are prior distributions
that are taken to be Gaussian (the :math:`vcp` parameters are log
standard deviations so the standard deviations have log-normal
distributions). The random effects distribution :math:`p(vc | vcp)`
is independent Gaussian (random effect realizations are independent
within and between values of the `ident` array). The model
:math:`p(y | vc, fep)` depends on the specific GLM being fit.
"""
import numpy as np
from scipy.optimize import minimize
from scipy import sparse
import statsmodels.base.model as base
from statsmodels.iolib import summary2
from statsmodels.genmod import families
import pandas as pd
import warnings
import patsy
# Gauss-Legendre weights
glw = [
[0.2955242247147529, -0.1488743389816312],
[0.2955242247147529, 0.1488743389816312],
[0.2692667193099963, -0.4333953941292472],
[0.2692667193099963, 0.4333953941292472],
[0.2190863625159820, -0.6794095682990244],
[0.2190863625159820, 0.6794095682990244],
[0.1494513491505806, -0.8650633666889845],
[0.1494513491505806, 0.8650633666889845],
[0.0666713443086881, -0.9739065285171717],
[0.0666713443086881, 0.9739065285171717],
]
_init_doc = r"""
Generalized Linear Mixed Model with Bayesian estimation
The class implements the Laplace approximation to the posterior
distribution (`fit_map`) and a variational Bayes approximation to
the posterior (`fit_vb`). See the two fit method docstrings for
more information about the fitting approaches.
Parameters
----------
endog : array_like
Vector of response values.
exog : array_like
Array of covariates for the fixed effects part of the mean
structure.
exog_vc : array_like
Array of covariates for the random part of the model. A
scipy.sparse array may be provided, or else the passed
array will be converted to sparse internally.
ident : array_like
Array of integer labels showing which random terms (columns
of `exog_vc`) have a common variance.
vcp_p : float
Prior standard deviation for variance component parameters
(the prior standard deviation of log(s) is vcp_p, where s is
the standard deviation of a random effect).
fe_p : float
Prior standard deviation for fixed effects parameters.
family : statsmodels.genmod.families instance
The GLM family.
fep_names : list[str]
The names of the fixed effects parameters (corresponding to
columns of exog). If None, default names are constructed.
vcp_names : list[str]
The names of the variance component parameters (corresponding
to distinct labels in ident). If None, default names are
constructed.
vc_names : list[str]
The names of the random effect realizations.
Returns
-------
MixedGLMResults object
Notes
-----
There are three types of values in the posterior distribution:
fixed effects parameters (fep), corresponding to the columns of
`exog`, random effects realizations (vc), corresponding to the
columns of `exog_vc`, and the standard deviations of the random
effects realizations (vcp), corresponding to the unique integer
labels in `ident`.
All random effects are modeled as being independent Gaussian
values (given the variance structure parameters). Every column of
`exog_vc` has a distinct realized random effect that is used to
form the linear predictors. The elements of `ident` determine the
distinct variance structure parameters. Two random effect
realizations that have the same value in `ident` have the same
variance. When fitting with a formula, `ident` is constructed
internally (each element of `vc_formulas` yields a distinct label
in `ident`).
The random effect standard deviation parameters (`vcp`) have
log-normal prior distributions with mean 0 and standard deviation
`vcp_p`.
Note that for some families, e.g. Binomial, the posterior mode may
be difficult to find numerically if `vcp_p` is set to too large of
a value. Setting `vcp_p` to 0.5 seems to work well.
The prior for the fixed effects parameters is Gaussian with mean 0
and standard deviation `fe_p`.
Examples
--------{example}
References
----------
Introduction to generalized linear mixed models:
https://stats.idre.ucla.edu/other/mult-pkg/introduction-to-generalized-linear-mixed-models
SAS documentation:
https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_intromix_a0000000215.htm
An assessment of estimation methods for generalized linear mixed
models with binary outcomes
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866838/
"""
# The code in the example should be identical to what appears in
# the test_doc_examples unit test
_logit_example = """
A binomial (logistic) random effects model with random intercepts
for villages and random slopes for each year within each village:
>>> random = {"a": '0 + C(Village)', "b": '0 + C(Village)*year_cen'}
>>> model = BinomialBayesMixedGLM.from_formula(
'y ~ year_cen', random, data)
>>> result = model.fit_vb()
"""
# The code in the example should be identical to what appears in
# the test_doc_examples unit test
_poisson_example = """
A Poisson random effects model with random intercepts for villages
and random slopes for each year within each village:
>>> random = {"a": '0 + C(Village)', "b": '0 + C(Village)*year_cen'}
>>> model = PoissonBayesMixedGLM.from_formula(
'y ~ year_cen', random, data)
>>> result = model.fit_vb()
"""
class _BayesMixedGLM(base.Model):
def __init__(self,
endog,
exog,
exog_vc=None,
ident=None,
family=None,
vcp_p=1,
fe_p=2,
fep_names=None,
vcp_names=None,
vc_names=None,
**kwargs):
if exog.ndim == 1:
if isinstance(exog, np.ndarray):
exog = exog[:, None]
else:
exog = pd.DataFrame(exog)
if exog.ndim != 2:
msg = "'exog' must have one or two columns"
raise ValueError(msg)
if exog_vc.ndim == 1:
if isinstance(exog_vc, np.ndarray):
exog_vc = exog_vc[:, None]
else:
exog_vc = pd.DataFrame(exog_vc)
if exog_vc.ndim != 2:
msg = "'exog_vc' must have one or two columns"
raise ValueError(msg)
ident = np.asarray(ident)
if ident.ndim != 1:
msg = "ident must be a one-dimensional array"
raise ValueError(msg)
if len(ident) != exog_vc.shape[1]:
msg = "len(ident) should match the number of columns of exog_vc"
raise ValueError(msg)
if not np.issubdtype(ident.dtype, np.integer):
msg = "ident must have an integer dtype"
raise ValueError(msg)
# Get the fixed effects parameter names
if fep_names is None:
if hasattr(exog, "columns"):
fep_names = exog.columns.tolist()
else:
fep_names = ["FE_%d" % (k + 1) for k in range(exog.shape[1])]
# Get the variance parameter names
if vcp_names is None:
vcp_names = ["VC_%d" % (k + 1) for k in range(int(max(ident)) + 1)]
else:
if len(vcp_names) != len(set(ident)):
msg = "The lengths of vcp_names and ident should be the same"
raise ValueError(msg)
if not sparse.issparse(exog_vc):
exog_vc = sparse.csr_matrix(exog_vc)
ident = ident.astype(np.int)
vcp_p = float(vcp_p)
fe_p = float(fe_p)
# Number of fixed effects parameters
if exog is None:
k_fep = 0
else:
k_fep = exog.shape[1]
# Number of variance component structure parameters and
# variance component realizations.
if exog_vc is None:
k_vc = 0
k_vcp = 0
else:
k_vc = exog_vc.shape[1]
k_vcp = max(ident) + 1
# power might be better but not available in older scipy
exog_vc2 = exog_vc.multiply(exog_vc)
super(_BayesMixedGLM, self).__init__(endog, exog, **kwargs)
self.exog_vc = exog_vc
self.exog_vc2 = exog_vc2
self.ident = ident
self.family = family
self.k_fep = k_fep
self.k_vc = k_vc
self.k_vcp = k_vcp
self.fep_names = fep_names
self.vcp_names = vcp_names
self.vc_names = vc_names
self.fe_p = fe_p
self.vcp_p = vcp_p
self.names = fep_names + vcp_names
if vc_names is not None:
self.names += vc_names
def _unpack(self, vec):
ii = 0
# Fixed effects parameters
fep = vec[:ii + self.k_fep]
ii += self.k_fep
# Variance component structure parameters (standard
# deviations). These are on the log scale. The standard
# deviation for random effect j is exp(vcp[ident[j]]).
vcp = vec[ii:ii + self.k_vcp]
ii += self.k_vcp
# Random effect realizations
vc = vec[ii:]
return fep, vcp, vc
def logposterior(self, params):
"""
The overall log-density: log p(y, fe, vc, vcp).
This differs by an additive constant from the log posterior
log p(fe, vc, vcp | y).
"""
fep, vcp, vc = self._unpack(params)
# Contributions from p(y | x, vc)
lp = 0
if self.k_fep > 0:
lp += np.dot(self.exog, fep)
if self.k_vc > 0:
lp += self.exog_vc.dot(vc)
mu = self.family.link.inverse(lp)
ll = self.family.loglike(self.endog, mu)
if self.k_vc > 0:
# Contributions from p(vc | vcp)
vcp0 = vcp[self.ident]
s = np.exp(vcp0)
ll -= 0.5 * np.sum(vc**2 / s**2) + np.sum(vcp0)
# Contributions from p(vc)
ll -= 0.5 * np.sum(vcp**2 / self.vcp_p**2)
# Contributions from p(fep)
if self.k_fep > 0:
ll -= 0.5 * np.sum(fep**2 / self.fe_p**2)
Loading ...