Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

alkaline-ml / statsmodels   python

Repository URL to install this package:

Version: 0.11.1 

/ regression / tests / results / results_grunfeld_ols_robust_cluster.py

import numpy as np

from statsmodels.tools.testing import ParamsTableTestBunch


est = dict(
    N_clust=10,
    N=200,
    df_m=2,
    df_r=9,
    F=51.59060716590177,
    r2=.8124080178314147,
    rmse=94.40840193979599,
    mss=7604093.484267689,
    rss=1755850.432294737,
    r2_a=.8105035307027997,
    ll=-1191.80235741801,
    ll_0=-1359.150955647688,
    rank=3,
    cmdline="regress invest mvalue kstock, vce(cluster company)",
    title="Linear regression",
    marginsok="XB default",
    vce="cluster",
    depvar="invest",
    cmd="regress",
    properties="b V",
    predict="regres_p",
    model="ols",
    estat_cmd="regress_estat",
    vcetype="Robust",
    clustvar="company",
    )

params_table = np.array([
    .11556215606596,  .01589433647768,  7.2706499090564,  .00004710548549,
    .07960666895505,  .15151764317688,                9,  2.2621571627982,
    0,  .23067848754982,  .08496711097464,  2.7149150406994,
    .02380515903536,  .03846952885627,  .42288744624337,                9,
    2.2621571627982,                0, -42.714369016733,  20.425202580078,
    -2.0912580352272,  .06604843284516, -88.919387334862,  3.4906493013959,
    9,  2.2621571627982,                0]).reshape(3, 9)

params_table_colnames = 'b se t pvalue ll ul df crit eform'.split()

params_table_rownames = 'mvalue kstock _cons'.split()

cov = np.array([
    .00025262993207, -.00065043385106,  .20961897960949, -.00065043385106,
    .00721940994738, -1.2171040967615,  .20961897960949, -1.2171040967615,
    417.18890043724]).reshape(3, 3)

cov_colnames = 'mvalue kstock _cons'.split()

cov_rownames = 'mvalue kstock _cons'.split()


results_cluster = ParamsTableTestBunch(
    params_table=params_table,
    params_table_colnames=params_table_colnames,
    params_table_rownames=params_table_rownames,
    cov=cov,
    cov_colnames=cov_colnames,
    cov_rownames=cov_rownames,
    **est
    )

est = dict(
    N=200,
    inexog_ct=2,
    exexog_ct=0,
    endog_ct=0,
    partial_ct=0,
    N_clust=10,
    df_m=2,
    sdofminus=0,
    dofminus=0,
    r2=.8124080178314146,
    rmse=93.69766358599176,
    rss=1755850.432294737,
    mss=7604093.484267682,
    r2_a=.8105035307027995,
    F=51.59060716590192,
    Fp=.0000117341240941,
    Fdf1=2,
    Fdf2=9,
    yy=13620706.07273678,
    yyc=9359943.916562419,
    partialcons=0,
    cons=1,
    jdf=0,
    j=0,
    ll=-1191.802357418011,
    rankV=3,
    rankS=3,
    rankxx=3,
    rankzz=3,
    r2c=.8124080178314146,
    r2u=.8710896173136538,
    clustvar="company",
    hacsubtitleV="Statistics robust to heteroskedasticity and clustering on company",  # noqa:E501
    hacsubtitleB="Estimates efficient for homoskedasticity only",
    title="OLS estimation",
    predict="ivreg2_p",
    version="03.1.07",
    cmdline="ivreg2 invest mvalue kstock, cluster(company)",
    cmd="ivreg2",
    model="ols",
    depvar="invest",
    vcetype="Robust",
    vce="robust cluster",
    partialsmall="small",
    inexog="mvalue kstock",
    insts="mvalue kstock",
    properties="b V",
)

params_table = np.array([
    .11556215606596,  .01500272788516,  7.7027429245215,  1.331761148e-14,
    .08615734974119,  .14496696239074, np.nan,  1.9599639845401,
    0,  .23067848754982,  .08020079648691,  2.8762618035529,
    .00402415789383,  .07348781490405,  .38786916019559, np.nan,
    1.9599639845401,                0, -42.714369016733,   19.27943055305,
    -2.2155410088072,  .02672295281194, -80.501358543152, -4.9273794903145,
    np.nan,  1.9599639845401,                0]).reshape(3, 9)

params_table_colnames = 'b se z pvalue ll ul df crit eform'.split()

params_table_rownames = 'mvalue kstock _cons'.split()

cov = np.array([
    .000225081844, -.00057950714469,   .1867610305767, -.00057950714469,
    .00643216775713, -1.0843847053056,   .1867610305767, -1.0843847053056,
    371.69644244987]).reshape(3, 3)

cov_colnames = 'mvalue kstock _cons'.split()

cov_rownames = 'mvalue kstock _cons'.split()


results_cluster_large = ParamsTableTestBunch(
    params_table=params_table,
    params_table_colnames=params_table_colnames,
    params_table_rownames=params_table_rownames,
    cov=cov,
    cov_colnames=cov_colnames,
    cov_rownames=cov_rownames,
    **est
)

est = dict(
    N=200,
    N_g=10,
    df_m=2,
    df_r=9,
    F=97.97910905239282,
    r2=.8124080178314147,
    rmse=94.40840193979599,
    lag=4,
    cmd="xtscc",
    predict="xtscc_p",
    method="Pooled OLS",
    depvar="invest",
    vcetype="Drisc/Kraay",
    title="Regression with Driscoll-Kraay standard errors",
    groupvar="company",
    properties="b V",
    )

params_table = np.array([
    .11556215606596,   .0134360177573,  8.6009231420662,  .00001235433261,
    .08516777225681,  .14595653987512,                9,  2.2621571627982,
    0,  .23067848754982,  .04930800664089,   4.678317037431,
    .00115494570515,  .11913602714384,   .3422209479558,                9,
    2.2621571627982,                0, -42.714369016733,  12.190347184209,
    -3.5039501641153,   .0066818746948, -70.290850216489, -15.137887816977,
    9,  2.2621571627982,                0]).reshape(3, 9)

params_table_colnames = 'b se t pvalue ll ul df crit eform'.split()

params_table_rownames = 'mvalue kstock _cons'.split()

cov = np.array([
    .00018052657317, -.00035661054613, -.06728261073866, -.00035661054613,
    .0024312795189, -.32394785247278, -.06728261073866, -.32394785247278,
    148.60456447156]).reshape(3, 3)

cov_colnames = 'mvalue kstock _cons'.split()

cov_rownames = 'mvalue kstock _cons'.split()


results_nw_groupsum4 = ParamsTableTestBunch(
    params_table=params_table,
    params_table_colnames=params_table_colnames,
    params_table_rownames=params_table_rownames,
    cov=cov,
    cov_colnames=cov_colnames,
    cov_rownames=cov_rownames,
    **est
)

est = dict(
    df_m=2,
    df_r=197,
    F=73.07593045506036,
    N=200,
    lag=4,
    rank=3,
    title="Regression with Newey-West standard errors",
    cmd="newey",
    cmdline="newey invest mvalue kstock, lag(4) force",
    estat_cmd="newey_estat",
    predict="newey_p",
    vcetype="Newey-West",
    depvar="invest",
    properties="b V",
)

params_table = np.array([
    .11556215606596,  .01142785251475,  10.112324771147,  1.251631065e-19,
    .0930255277205,  .13809878441142,              197,  1.9720790337785,
    0,  .23067848754982,  .06842168281423,  3.3714237660029,
    .00089998163666,  .09574552141602,  .36561145368361,              197,
    1.9720790337785,                0, -42.714369016733,  16.179042041128,
    -2.6401049523298,  .00895205094219, -74.620718612662, -10.808019420804,
    197,  1.9720790337785,                0]).reshape(3, 9)

params_table_colnames = 'b se t pvalue ll ul df crit eform'.split()

params_table_rownames = 'mvalue kstock _cons'.split()

cov = np.array([
    .0001305958131, -.00022910455176,  .00889686530849, -.00022910455176,
    .00468152667913, -.88403667445531,  .00889686530849, -.88403667445531,
    261.76140136858]).reshape(3, 3)

cov_colnames = 'mvalue kstock _cons'.split()

cov_rownames = 'mvalue kstock _cons'.split()


results_nw_panel4 = ParamsTableTestBunch(
    params_table=params_table,
    params_table_colnames=params_table_colnames,
    params_table_rownames=params_table_rownames,
    cov=cov,
    cov_colnames=cov_colnames,
    cov_rownames=cov_rownames,
    **est
)

est = dict(
    N=200,
    inexog_ct=2,
    exexog_ct=0,
    endog_ct=0,
    partial_ct=0,
    df_r=9,
    N_clust=10,
    N_clust1=10,
    N_clust2=20,
    df_m=2,
    sdofminus=0,
    dofminus=0,
    r2=.8124080178314146,
    rmse=94.40840193979601,
    rss=1755850.432294737,
    mss=7604093.484267682,
    r2_a=.8105035307027995,
    F=57.99124535923564,
    Fp=7.21555935862e-06,
    Fdf1=2,
    partialcons=0,
    cons=1,
    jdf=0,
    j=0,
    ll=-1191.802357418011,
    rankV=3,
    rankS=3,
    rankxx=3,
    rankzz=3,
    r2c=.8124080178314146,
    r2u=.8710896173136538,
    yyc=9359943.916562419,
    yy=13620706.07273678,
    Fdf2=9,
    clustvar="company time",
    hacsubtitleV="Statistics robust to heteroskedasticity and clustering on company and time",  # noqa:E501
    hacsubtitleB="Estimates efficient for homoskedasticity only",
    title="OLS estimation",
    predict="ivreg2_p",
    version="03.1.07",
    cmdline="ivreg2 invest mvalue kstock, cluster(company time) small",
    cmd="ivreg2",
    model="ols",
    depvar="invest",
    vcetype="Robust",
    clustvar2="time",
    clustvar1="company",
    vce="robust two-way cluster",
    partialsmall="small",
    small="small",
    inexog="mvalue kstock",
    insts="mvalue kstock",
    properties="b V",
)

params_table = np.array([
    .11556215606596,  .01635175387097,  7.0672636695645,  .00005873628221,
    .07857191892244,  .15255239320949,                9,  2.2621571627982,
    0,  .23067848754982,  .07847391274682,  2.9395563375824,
    .01649863150032,  .05315816373679,  .40819881136285,                9,
    2.2621571627982,                0, -42.714369016733,  19.505607409785,
    -2.189850750062,  .05626393734425, -86.839118533508,  1.4103805000422,
    9,  2.2621571627982,                0]).reshape(3, 9)

params_table_colnames = 'b se t pvalue ll ul df crit eform'.split()

params_table_rownames = 'mvalue kstock _cons'.split()

cov = np.array([
    .00026737985466, -.00070163493529,  .19641438763743, -.00070163493529,
    .0061581549818, -.99627581152391,  .19641438763743, -.99627581152391,
    380.46872042467]).reshape(3, 3)

cov_colnames = 'mvalue kstock _cons'.split()

cov_rownames = 'mvalue kstock _cons'.split()


results_cluster_2groups_small = ParamsTableTestBunch(
    params_table=params_table,
    params_table_colnames=params_table_colnames,
    params_table_rownames=params_table_rownames,
    cov=cov,
    cov_colnames=cov_colnames,
    cov_rownames=cov_rownames,
    **est
)

est = dict(
    N=200,
    inexog_ct=2,
    exexog_ct=0,
    endog_ct=0,
Loading ...