import numpy as np
from statsmodels.tools.tools import Bunch
epanechnikov_hsheather_q75 = Bunch()
epanechnikov_hsheather_q75.table = np.array([
[.6440143, .0122001, 52.79, 0.000, .6199777, .6680508],
[62.39648, 13.5509, 4.60, 0.000, 35.69854, 89.09443]
])
epanechnikov_hsheather_q75.psrsquared = 0.6966
epanechnikov_hsheather_q75.rank = 2
epanechnikov_hsheather_q75.sparsity = 223.784434936344
epanechnikov_hsheather_q75.bwidth = .1090401129546568
# epanechnikov_hsheather_q75.kbwidth = 59.62067927472172 # Stata 12 results
epanechnikov_hsheather_q75.kbwidth = 59.30 # TODO: why do we need lower tol?
epanechnikov_hsheather_q75.df_m = 1
epanechnikov_hsheather_q75.df_r = 233
epanechnikov_hsheather_q75.f_r = .0044685860313942
epanechnikov_hsheather_q75.N = 235
epanechnikov_hsheather_q75.q_v = 745.2352905273438
epanechnikov_hsheather_q75.q = .75
epanechnikov_hsheather_q75.sum_rdev = 43036.06956481934
epanechnikov_hsheather_q75.sum_adev = 13058.50008841318
epanechnikov_hsheather_q75.convcode = 0
biweight_bofinger = Bunch()
biweight_bofinger.table = np.array([
[.5601805, .0136491, 41.04, 0.000, .533289, .5870719],
[81.48233, 15.1604, 5.37, 0.000, 51.61335, 111.3513]
])
biweight_bofinger.psrsquared = 0.6206
biweight_bofinger.rank = 2
biweight_bofinger.sparsity = 216.8218989750115
biweight_bofinger.bwidth = .2173486679767846
biweight_bofinger.kbwidth = 91.50878448104551
biweight_bofinger.df_m = 1
biweight_bofinger.df_r = 233
biweight_bofinger.f_r = .0046120802590851
biweight_bofinger.N = 235
biweight_bofinger.q_v = 582.541259765625
biweight_bofinger.q = .5
biweight_bofinger.sum_rdev = 46278.05667114258
biweight_bofinger.sum_adev = 17559.93220318131
biweight_bofinger.convcode = 0
biweight_hsheather = Bunch()
biweight_hsheather.table = np.array([
[.5601805, .0128449, 43.61, 0.000, .5348735, .5854875],
[81.48233, 14.26713, 5.71, 0.000, 53.37326, 109.5914]
])
biweight_hsheather.psrsquared = 0.6206
biweight_hsheather.rank = 2
biweight_hsheather.sparsity = 204.0465407204423
biweight_hsheather.bwidth = .1574393314202373
biweight_hsheather.kbwidth = 64.53302151153288
biweight_hsheather.df_m = 1
biweight_hsheather.df_r = 233
biweight_hsheather.f_r = .0049008427022052
biweight_hsheather.N = 235
biweight_hsheather.q_v = 582.541259765625
biweight_hsheather.q = .5
biweight_hsheather.sum_rdev = 46278.05667114258
biweight_hsheather.sum_adev = 17559.93220318131
biweight_hsheather.convcode = 0
biweight_chamberlain = Bunch()
biweight_chamberlain.table = np.array([
[.5601805, .0114969, 48.72, 0.000, .5375294, .5828315],
[81.48233, 12.76983, 6.38, 0.000, 56.32325, 106.6414]
])
biweight_chamberlain.psrsquared = 0.6206
biweight_chamberlain.rank = 2
biweight_chamberlain.sparsity = 182.6322495257494
biweight_chamberlain.bwidth = .063926976464458
biweight_chamberlain.kbwidth = 25.61257055690209
biweight_chamberlain.df_m = 1
biweight_chamberlain.df_r = 233
biweight_chamberlain.f_r = .005475484218131
biweight_chamberlain.N = 235
biweight_chamberlain.q_v = 582.541259765625
biweight_chamberlain.q = .5
biweight_chamberlain.sum_rdev = 46278.05667114258
biweight_chamberlain.sum_adev = 17559.93220318131
biweight_chamberlain.convcode = 0
epanechnikov_bofinger = Bunch()
epanechnikov_bofinger.table = np.array([
[.5601805, .0209663, 26.72, 0.000, .5188727, .6014882],
[81.48233, 23.28774, 3.50, 0.001, 35.60088, 127.3638]
])
epanechnikov_bofinger.psrsquared = 0.6206
epanechnikov_bofinger.rank = 2
epanechnikov_bofinger.sparsity = 333.0579553401614
epanechnikov_bofinger.bwidth = .2173486679767846
epanechnikov_bofinger.kbwidth = 91.50878448104551
epanechnikov_bofinger.df_m = 1
epanechnikov_bofinger.df_r = 233
epanechnikov_bofinger.f_r = .0030024804511235
epanechnikov_bofinger.N = 235
epanechnikov_bofinger.q_v = 582.541259765625
epanechnikov_bofinger.q = .5
epanechnikov_bofinger.sum_rdev = 46278.05667114258
epanechnikov_bofinger.sum_adev = 17559.93220318131
epanechnikov_bofinger.convcode = 0
epanechnikov_hsheather = Bunch()
epanechnikov_hsheather.table = np.array([
[.5601805, .0170484, 32.86, 0.000, .5265918, .5937692],
[81.48233, 18.93605, 4.30, 0.000, 44.17457, 118.7901]
])
epanechnikov_hsheather.psrsquared = 0.6206
epanechnikov_hsheather.rank = 2
epanechnikov_hsheather.sparsity = 270.8207209067576
epanechnikov_hsheather.bwidth = .1574393314202373
epanechnikov_hsheather.kbwidth = 64.53302151153288
epanechnikov_hsheather.df_m = 1
epanechnikov_hsheather.df_r = 233
epanechnikov_hsheather.f_r = .0036924796472434
epanechnikov_hsheather.N = 235
epanechnikov_hsheather.q_v = 582.541259765625
epanechnikov_hsheather.q = .5
epanechnikov_hsheather.sum_rdev = 46278.05667114258
epanechnikov_hsheather.sum_adev = 17559.93220318131
epanechnikov_hsheather.convcode = 0
epanechnikov_chamberlain = Bunch()
epanechnikov_chamberlain.table = np.array([
[.5601805, .0130407, 42.96, 0.000, .5344876, .5858733],
[81.48233, 14.48467, 5.63, 0.000, 52.94468, 110.02]
])
epanechnikov_chamberlain.psrsquared = 0.6206
epanechnikov_chamberlain.rank = 2
epanechnikov_chamberlain.sparsity = 207.1576340635951
epanechnikov_chamberlain.bwidth = .063926976464458
epanechnikov_chamberlain.kbwidth = 25.61257055690209
epanechnikov_chamberlain.df_m = 1
epanechnikov_chamberlain.df_r = 233
epanechnikov_chamberlain.f_r = .0048272418466269
epanechnikov_chamberlain.N = 235
epanechnikov_chamberlain.q_v = 582.541259765625
epanechnikov_chamberlain.q = .5
epanechnikov_chamberlain.sum_rdev = 46278.05667114258
epanechnikov_chamberlain.sum_adev = 17559.93220318131
epanechnikov_chamberlain.convcode = 0
epan2_bofinger = Bunch()
epan2_bofinger.table = np.array([
[.5601805, .0143484, 39.04, 0.000, .5319113, .5884496],
[81.48233, 15.93709, 5.11, 0.000, 50.08313, 112.8815]
])
epan2_bofinger.psrsquared = 0.6206
epan2_bofinger.rank = 2
epan2_bofinger.sparsity = 227.9299402797656
epan2_bofinger.bwidth = .2173486679767846
epan2_bofinger.kbwidth = 91.50878448104551
epan2_bofinger.df_m = 1
epan2_bofinger.df_r = 233
epan2_bofinger.f_r = .0043873130435281
epan2_bofinger.N = 235
epan2_bofinger.q_v = 582.541259765625
epan2_bofinger.q = .5
epan2_bofinger.sum_rdev = 46278.05667114258
epan2_bofinger.sum_adev = 17559.93220318131
epan2_bofinger.convcode = 0
epan2_hsheather = Bunch()
epan2_hsheather.table = np.array([
[.5601805, .0131763, 42.51, 0.000, .5342206, .5861403],
[81.48233, 14.63518, 5.57, 0.000, 52.64815, 110.3165]
])
epan2_hsheather.psrsquared = 0.6206
epan2_hsheather.rank = 2
epan2_hsheather.sparsity = 209.3102085912557
epan2_hsheather.bwidth = .1574393314202373
epan2_hsheather.kbwidth = 64.53302151153288
epan2_hsheather.df_m = 1
epan2_hsheather.df_r = 233
epan2_hsheather.f_r = .0047775978378236
epan2_hsheather.N = 235
epan2_hsheather.q_v = 582.541259765625
epan2_hsheather.q = .5
epan2_hsheather.sum_rdev = 46278.05667114258
epan2_hsheather.sum_adev = 17559.93220318131
epan2_hsheather.convcode = 0
epan2_chamberlain = Bunch()
epan2_chamberlain.table = np.array([
[.5601805, .0117925, 47.50, 0.000, .5369469, .583414],
[81.48233, 13.0982, 6.22, 0.000, 55.67629, 107.2884]
])
epan2_chamberlain.psrsquared = 0.6206
epan2_chamberlain.rank = 2
epan2_chamberlain.sparsity = 187.3286437436797
epan2_chamberlain.bwidth = .063926976464458
epan2_chamberlain.kbwidth = 25.61257055690209
epan2_chamberlain.df_m = 1
epan2_chamberlain.df_r = 233
epan2_chamberlain.f_r = .0053382119253919
epan2_chamberlain.N = 235
epan2_chamberlain.q_v = 582.541259765625
epan2_chamberlain.q = .5
epan2_chamberlain.sum_rdev = 46278.05667114258
epan2_chamberlain.sum_adev = 17559.93220318131
epan2_chamberlain.convcode = 0
rectangle_bofinger = Bunch()
rectangle_bofinger.table = np.array([
[.5601805, .0158331, 35.38, 0.000, .5289861, .5913748],
[81.48233, 17.5862, 4.63, 0.000, 46.83404, 116.1306]
])
rectangle_bofinger.psrsquared = 0.6206
rectangle_bofinger.rank = 2
rectangle_bofinger.sparsity = 251.515372550242
rectangle_bofinger.bwidth = .2173486679767846
rectangle_bofinger.kbwidth = 91.50878448104551
rectangle_bofinger.df_m = 1
rectangle_bofinger.df_r = 233
rectangle_bofinger.f_r = .0039759001203803
rectangle_bofinger.N = 235
rectangle_bofinger.q_v = 582.541259765625
rectangle_bofinger.q = .5
rectangle_bofinger.sum_rdev = 46278.05667114258
rectangle_bofinger.sum_adev = 17559.93220318131
rectangle_bofinger.convcode = 0
rectangle_hsheather = Bunch()
rectangle_hsheather.table = np.array([
[.5601805, .0137362, 40.78, 0.000, .5331174, .5872435],
[81.48233, 15.25712, 5.34, 0.000, 51.42279, 111.5419]
])
rectangle_hsheather.psrsquared = 0.6206
rectangle_hsheather.rank = 2
rectangle_hsheather.sparsity = 218.2051806505069
rectangle_hsheather.bwidth = .1574393314202373
rectangle_hsheather.kbwidth = 64.53302151153288
rectangle_hsheather.df_m = 1
rectangle_hsheather.df_r = 233
rectangle_hsheather.f_r = .004582842611797
rectangle_hsheather.N = 235
rectangle_hsheather.q_v = 582.541259765625
rectangle_hsheather.q = .5
rectangle_hsheather.sum_rdev = 46278.05667114258
rectangle_hsheather.sum_adev = 17559.93220318131
rectangle_hsheather.convcode = 0
rectangle_chamberlain = Bunch()
rectangle_chamberlain.table = np.array([
[.5601805, .0118406, 47.31, 0.000, .5368522, .5835087],
[81.48233, 13.1516, 6.20, 0.000, 55.57108, 107.3936]
])
rectangle_chamberlain.psrsquared = 0.6206
rectangle_chamberlain.rank = 2
rectangle_chamberlain.sparsity = 188.0923150272497
rectangle_chamberlain.bwidth = .063926976464458
rectangle_chamberlain.kbwidth = 25.61257055690209
rectangle_chamberlain.df_m = 1
rectangle_chamberlain.df_r = 233
rectangle_chamberlain.f_r = .0053165383171297
rectangle_chamberlain.N = 235
rectangle_chamberlain.q_v = 582.541259765625
rectangle_chamberlain.q = .5
rectangle_chamberlain.sum_rdev = 46278.05667114258
rectangle_chamberlain.sum_adev = 17559.93220318131
rectangle_chamberlain.convcode = 0
triangle_bofinger = Bunch()
triangle_bofinger.table = np.array([
[.5601805, .0138712, 40.38, 0.000, .5328515, .5875094],
[81.48233, 15.40706, 5.29, 0.000, 51.12738, 111.8373]
])
triangle_bofinger.psrsquared = 0.6206
triangle_bofinger.rank = 2
triangle_bofinger.sparsity = 220.3495620604223
triangle_bofinger.bwidth = .2173486679767846
triangle_bofinger.kbwidth = 91.50878448104551
triangle_bofinger.df_m = 1
triangle_bofinger.df_r = 233
triangle_bofinger.f_r = .0045382436463649
triangle_bofinger.N = 235
triangle_bofinger.q_v = 582.541259765625
triangle_bofinger.q = .5
triangle_bofinger.sum_rdev = 46278.05667114258
triangle_bofinger.sum_adev = 17559.93220318131
triangle_bofinger.convcode = 0
triangle_hsheather = Bunch()
triangle_hsheather.table = np.array([
[.5601805, .0128874, 43.47, 0.000, .5347898, .5855711],
[81.48233, 14.31431, 5.69, 0.000, 53.2803, 109.6844]
])
triangle_hsheather.psrsquared = 0.6206
triangle_hsheather.rank = 2
triangle_hsheather.sparsity = 204.7212998199564
triangle_hsheather.bwidth = .1574393314202373
triangle_hsheather.kbwidth = 64.53302151153288
triangle_hsheather.df_m = 1
triangle_hsheather.df_r = 233
triangle_hsheather.f_r = .004884689579831
triangle_hsheather.N = 235
triangle_hsheather.q_v = 582.541259765625
triangle_hsheather.q = .5
triangle_hsheather.sum_rdev = 46278.05667114258
triangle_hsheather.sum_adev = 17559.93220318131
triangle_hsheather.convcode = 0
triangle_chamberlain = Bunch()
triangle_chamberlain.table = np.array([
[.5601805, .0115725, 48.41, 0.000, .5373803, .5829806],
[81.48233, 12.85389, 6.34, 0.000, 56.15764, 106.807]
])
triangle_chamberlain.psrsquared = 0.6206
triangle_chamberlain.rank = 2
triangle_chamberlain.sparsity = 183.8344452913298
triangle_chamberlain.bwidth = .063926976464458
triangle_chamberlain.kbwidth = 25.61257055690209
triangle_chamberlain.df_m = 1
triangle_chamberlain.df_r = 233
triangle_chamberlain.f_r = .0054396769790083
triangle_chamberlain.N = 235
triangle_chamberlain.q_v = 582.541259765625
triangle_chamberlain.q = .5
triangle_chamberlain.sum_rdev = 46278.05667114258
triangle_chamberlain.sum_adev = 17559.93220318131
triangle_chamberlain.convcode = 0
gaussian_bofinger = Bunch()
gaussian_bofinger.table = np.array([
[.5601805, .0197311, 28.39, 0.000, .5213062, .5990547],
[81.48233, 21.91582, 3.72, 0.000, 38.30383, 124.6608]
])
gaussian_bofinger.psrsquared = 0.6206
gaussian_bofinger.rank = 2
gaussian_bofinger.sparsity = 313.4370075776719
gaussian_bofinger.bwidth = .2173486679767846
gaussian_bofinger.kbwidth = 91.50878448104551
gaussian_bofinger.df_m = 1
gaussian_bofinger.df_r = 233
gaussian_bofinger.f_r = .0031904337261521
gaussian_bofinger.N = 235
gaussian_bofinger.q_v = 582.541259765625
gaussian_bofinger.q = .5
Loading ...