Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

alkaline-ml / statsmodels   python

Repository URL to install this package:

Version: 0.11.1 

/ sandbox / nonparametric / tests / test_smoothers.py

# -*- coding: utf-8 -*-
"""
Created on Fri Nov 04 10:51:39 2011

Author: Josef Perktold
License: BSD-3
"""

import numpy as np
from numpy.testing import assert_almost_equal, assert_equal

from statsmodels.sandbox.nonparametric import smoothers
from statsmodels.regression.linear_model import OLS, WLS


class CheckSmoother(object):

    def test_predict(self):
        assert_almost_equal(self.res_ps.predict(self.x),
                            self.res2.fittedvalues, decimal=13)
        assert_almost_equal(self.res_ps.predict(self.x[:10]),
                            self.res2.fittedvalues[:10], decimal=13)

    def test_coef(self):
        #TODO: check dim of coef
        assert_almost_equal(self.res_ps.coef.ravel(),
                            self.res2.params, decimal=14)

    def test_df(self):
        #TODO: make into attributes
        assert_equal(self.res_ps.df_model(), self.res2.df_model+1) #with const
        assert_equal(self.res_ps.df_fit(), self.res2.df_model+1) #alias
        assert_equal(self.res_ps.df_resid(), self.res2.df_resid)



class BasePolySmoother(object):

    @classmethod
    def setup_class(cls):
        #DGP: simple polynomial
        order = 3
        sigma_noise = 0.5
        nobs = 100
        lb, ub = -1, 2
        cls.x = x = np.linspace(lb, ub, nobs)
        cls.exog = exog = x[:,None]**np.arange(order+1)
        y_true = exog.sum(1)
        np.random.seed(987567)
        cls.y = y = y_true + sigma_noise * np.random.randn(nobs)


class TestPolySmoother1(BasePolySmoother, CheckSmoother):

    @classmethod
    def setup_class(cls):
        super(TestPolySmoother1, cls).setup_class() #initialize DGP

        y, x, exog = cls.y, cls.x, cls.exog

        #use order = 2 in regression
        pmod = smoothers.PolySmoother(2, x)
        pmod.fit(y)  #no return

        cls.res_ps = pmod
        cls.res2 = OLS(y, exog[:,:2+1]).fit()

class TestPolySmoother2(BasePolySmoother, CheckSmoother):

    @classmethod
    def setup_class(cls):
        super(TestPolySmoother2, cls).setup_class() #initialize DGP

        y, x, exog = cls.y, cls.x, cls.exog

        #use order = 3 in regression
        pmod = smoothers.PolySmoother(3, x)
        #pmod.fit(y)  #no return
        pmod.smooth(y)  #no return, use alias for fit

        cls.res_ps = pmod
        cls.res2 = OLS(y, exog[:,:3+1]).fit()

class TestPolySmoother3(BasePolySmoother, CheckSmoother):

    @classmethod
    def setup_class(cls):
        super(TestPolySmoother3, cls).setup_class() #initialize DGP

        y, x, exog = cls.y, cls.x, cls.exog
        nobs = y.shape[0]
        weights = np.ones(nobs)
        weights[:nobs//3] = 0.1
        weights[-nobs//5:] = 2

        #use order = 2 in regression
        pmod = smoothers.PolySmoother(2, x)
        pmod.fit(y, weights=weights)  #no return

        cls.res_ps = pmod
        cls.res2 = WLS(y, exog[:,:2+1], weights=weights).fit()


if __name__ == '__main__':
    t1 = TestPolySmoother1()
    t1.test_predict()
    t1.test_coef()
    t1.test_df

    t3 = TestPolySmoother3()
    t3.test_predict()