# -*- coding: utf-8 -*-
"""Tests for gam.AdditiveModel and GAM with Polynomials compared to OLS and GLM
Created on Sat Nov 05 14:16:07 2011
Author: Josef Perktold
License: BSD
Notes
-----
TODO: TestGAMGamma: has test failure (GLM looks good),
adding log-link did not help
resolved: gamma does not fail anymore after tightening the
convergence criterium (rtol=1e-6)
TODO: TestGAMNegativeBinomial: rvs generation does not work,
nbinom needs 2 parameters
TODO: TestGAMGaussianLogLink: test failure,
but maybe precision issue, not completely off
but something is wrong, either the testcase or with the link
>>> tt3.__class__
<class '__main__.TestGAMGaussianLogLink'>
>>> tt3.res2.mu_pred.mean()
3.5616368292650766
>>> tt3.res1.mu_pred.mean()
3.6144278964707679
>>> tt3.mu_true.mean()
34.821904835958122
>>>
>>> tt3.y_true.mean()
2.685225067611543
>>> tt3.res1.y_pred.mean()
0.52991541684645616
>>> tt3.res2.y_pred.mean()
0.44626406889363229
one possible change
~~~~~~~~~~~~~~~~~~~
add average, integral based tests, instead of or additional to sup
* for example mean squared error for mu and eta (predict, fittedvalues)
or mean absolute error, what's the scale for this? required precision?
* this will also work for real non-parametric tests
example: Gamma looks good in average bias and average RMSE (RMISE)
>>> tt3 = _estGAMGamma()
>>> np.mean((tt3.res2.mu_pred - tt3.mu_true))/tt3.mu_true.mean()
-0.0051829977497423706
>>> np.mean((tt3.res2.y_pred - tt3.y_true))/tt3.y_true.mean()
0.00015255264651864049
>>> np.mean((tt3.res1.y_pred - tt3.y_true))/tt3.y_true.mean()
0.00015255538823786711
>>> np.mean((tt3.res1.mu_pred - tt3.mu_true))/tt3.mu_true.mean()
-0.0051937668989744494
>>> np.sqrt(np.mean((tt3.res1.mu_pred - tt3.mu_true)**2))/tt3.mu_true.mean()
0.022946118520401692
>>> np.sqrt(np.mean((tt3.res2.mu_pred - tt3.mu_true)**2))/tt3.mu_true.mean()
0.022953913332599746
>>> maxabs = lambda x: np.max(np.abs(x))
>>> maxabs((tt3.res1.mu_pred - tt3.mu_true))/tt3.mu_true.mean()
0.079540546242707733
>>> maxabs((tt3.res2.mu_pred - tt3.mu_true))/tt3.mu_true.mean()
0.079578857986784574
>>> maxabs((tt3.res2.y_pred - tt3.y_true))/tt3.y_true.mean()
0.016282852522951426
>>> maxabs((tt3.res1.y_pred - tt3.y_true))/tt3.y_true.mean()
0.016288391235613865
"""
from statsmodels.compat.python import lrange
import numpy as np
from numpy.testing import assert_almost_equal, assert_equal
from scipy import stats
import pytest
from statsmodels.sandbox.gam import AdditiveModel
from statsmodels.sandbox.gam import Model as GAM #?
from statsmodels.genmod.families import family, links
from statsmodels.genmod.generalized_linear_model import GLM
from statsmodels.regression.linear_model import OLS
class Dummy(object):
pass
class CheckAM(object):
def test_predict(self):
assert_almost_equal(self.res1.y_pred,
self.res2.y_pred, decimal=2)
assert_almost_equal(self.res1.y_predshort,
self.res2.y_pred[:10], decimal=2)
@pytest.mark.xfail(reason="Unknown, results do not match expected",
raises=AssertionError, strict=True)
def test_fitted(self):
# check definition of fitted in GLM: eta or mu
assert_almost_equal(self.res1.y_pred,
self.res2.fittedvalues, decimal=2)
assert_almost_equal(self.res1.y_predshort,
self.res2.fittedvalues[:10], decimal=2)
def test_params(self):
#note: only testing slope coefficients
#constant is far off in example 4 versus 2
assert_almost_equal(self.res1.params[1:],
self.res2.params[1:], decimal=2)
#constant
assert_almost_equal(self.res1.params[1],
self.res2.params[1], decimal=2)
@pytest.mark.xfail(reason="res_ps attribute does not exist",
strict=True, raises=AttributeError)
def test_df(self):
# not used yet, copied from PolySmoother tests
assert_equal(self.res_ps.df_model(), self.res2.df_model)
assert_equal(self.res_ps.df_fit(), self.res2.df_model) #alias
assert_equal(self.res_ps.df_resid(), self.res2.df_resid)
class CheckGAM(CheckAM):
def test_mu(self):
# problem with scale for precision
assert_almost_equal(self.res1.mu_pred,
self.res2.mu_pred, decimal=0)
def test_prediction(self):
# problem with scale for precision
assert_almost_equal(self.res1.y_predshort,
self.res2.y_pred[:10], decimal=2)
class BaseAM(object):
@classmethod
def setup_class(cls):
#DGP: simple polynomial
order = 3
nobs = 200
lb, ub = -3.5, 3
x1 = np.linspace(lb, ub, nobs)
x2 = np.sin(2*x1)
x = np.column_stack((x1/x1.max()*1, 1.*x2))
exog = (x[:,:,None]**np.arange(order+1)[None, None, :]).reshape(nobs, -1)
idx = lrange((order+1)*2)
del idx[order+1]
exog_reduced = exog[:,idx] #remove duplicate constant
y_true = exog.sum(1) #/ 4.
#z = y_true #alias check
#d = x
cls.nobs = nobs
cls.y_true, cls.x, cls.exog = y_true, x, exog_reduced
class TestAdditiveModel(BaseAM, CheckAM):
@classmethod
def setup_class(cls):
super(TestAdditiveModel, cls).setup_class() #initialize DGP
nobs = cls.nobs
y_true, x, exog = cls.y_true, cls.x, cls.exog
np.random.seed(8765993)
sigma_noise = 0.1
y = y_true + sigma_noise * np.random.randn(nobs)
m = AdditiveModel(x)
m.fit(y)
res_gam = m.results #TODO: currently attached to class
res_ols = OLS(y, exog).fit()
#Note: there still are some naming inconsistencies
cls.res1 = res1 = Dummy() #for gam model
#res2 = Dummy() #for benchmark
cls.res2 = res2 = res_ols #reuse existing ols results, will add additional
res1.y_pred = res_gam.predict(x)
res2.y_pred = res_ols.model.predict(res_ols.params, exog)
res1.y_predshort = res_gam.predict(x[:10])
slopes = [i for ss in m.smoothers for i in ss.params[1:]]
const = res_gam.alpha + sum([ss.params[1] for ss in m.smoothers])
#print const, slopes
res1.params = np.array([const] + slopes)
def test_fitted(self):
# We have to override the base class because this case does not fail,
# while all others in this module do (as of 2019-05-22)
super(TestAdditiveModel, self).test_fitted()
class BaseGAM(BaseAM, CheckGAM):
@classmethod
def init(cls):
nobs = cls.nobs
y_true, x, exog = cls.y_true, cls.x, cls.exog
if not hasattr(cls, 'scale'):
scale = 1
else:
scale = cls.scale
f = cls.family
cls.mu_true = mu_true = f.link.inverse(y_true)
np.random.seed(8765993)
# Discrete distributions do not take `scale`.
try:
y_obs = cls.rvs(mu_true, scale=scale, size=nobs)
except TypeError:
y_obs = cls.rvs(mu_true, size=nobs)
m = GAM(y_obs, x, family=f) #TODO: y_obs is twice __init__ and fit
m.fit(y_obs, maxiter=100)
res_gam = m.results
cls.res_gam = res_gam #attached for debugging
cls.mod_gam = m #attached for debugging
res_glm = GLM(y_obs, exog, family=f).fit()
#Note: there still are some naming inconsistencies
cls.res1 = res1 = Dummy() #for gam model
#res2 = Dummy() #for benchmark
cls.res2 = res2 = res_glm #reuse existing glm results, will add additional
#eta in GLM terminology
res2.y_pred = res_glm.model.predict(res_glm.params, exog, linear=True)
res1.y_pred = res_gam.predict(x)
res1.y_predshort = res_gam.predict(x[:10]) #, linear=True)
#mu
res2.mu_pred = res_glm.model.predict(res_glm.params, exog, linear=False)
res1.mu_pred = res_gam.mu
#parameters
slopes = [i for ss in m.smoothers for i in ss.params[1:]]
const = res_gam.alpha + sum([ss.params[1] for ss in m.smoothers])
res1.params = np.array([const] + slopes)
class TestGAMPoisson(BaseGAM):
@classmethod
def setup_class(cls):
super(TestGAMPoisson, cls).setup_class() #initialize DGP
cls.family = family.Poisson()
cls.rvs = stats.poisson.rvs
cls.init()
class TestGAMBinomial(BaseGAM):
@classmethod
def setup_class(cls):
super(TestGAMBinomial, cls).setup_class() #initialize DGP
cls.family = family.Binomial()
cls.rvs = stats.bernoulli.rvs
cls.init()
@pytest.mark.xfail(reason="Unknown, results do not match expected.",
strict=True, raises=AssertionError)
class TestGAMGaussianLogLink(BaseGAM):
#test failure, but maybe precision issue, not far off
#>>> np.mean(np.abs(tt.res2.mu_pred - tt.mu_true))
#0.80409736263199649
#>>> np.mean(np.abs(tt.res2.mu_pred - tt.mu_true))/tt.mu_true.mean()
#0.023258245077813208
#>>> np.mean((tt.res2.mu_pred - tt.mu_true)**2)/tt.mu_true.mean()
#0.022989403735692578
@classmethod
def setup_class(cls):
super(TestGAMGaussianLogLink, cls).setup_class() # initialize DGP
cls.family = family.Gaussian(links.log())
cls.rvs = stats.norm.rvs
cls.scale = 5
cls.init()
class TestGAMGamma(BaseGAM):
@classmethod
def setup_class(cls):
super(TestGAMGamma, cls).setup_class() #initialize DGP
cls.family = family.Gamma(links.log())
cls.rvs = stats.gamma.rvs
cls.init()
@pytest.mark.xfail(reason="Passing wrong number of args/kwargs "
"to _parse_args_rvs",
strict=True, raises=TypeError)
class TestGAMNegativeBinomial(BaseGAM):
# TODO: rvs generation does not work, nbinom needs 2 parameters
@classmethod
def setup_class(cls):
super(TestGAMNegativeBinomial, cls).setup_class() # initialize DGP
cls.family = family.NegativeBinomial()
cls.rvs = stats.nbinom.rvs
cls.init()
@pytest.mark.xfail(reason="Passing wrong number of args/kwargs "
"to _parse_args_rvs",
strict=True, raises=TypeError)
def test_fitted(self):
# We have to override the base class method in order to correctly
# specify the type of failure we are expecting.
super(TestGAMNegativeBinomial, self).test_fitted()
@pytest.mark.xfail(reason="Passing wrong number of args/kwargs "
"to _parse_args_rvs",
strict=True, raises=TypeError)
def test_df(self):
# We have to override the base class method in order to correctly
# specify the type of failure we are expecting.
super(TestGAMNegativeBinomial, self).test_df()