'''trying to verify theoretical acf of arma
explicit functions for autocovariance functions of ARIMA(1,1), MA(1), MA(2)
plus 3 functions from nitime.utils
'''
import numpy as np
from numpy.testing import assert_array_almost_equal
import matplotlib.pyplot as plt
import statsmodels.api as sm
from statsmodels.tsa.arima_process import arma_generate_sample, arma_impulse_response
from statsmodels.tsa.arima_process import arma_acovf, arma_acf, ARIMA
from statsmodels.tsa.stattools import acf, acovf
from statsmodels.graphics.tsaplots import plotacf
ar = [1., -0.6]
#ar = [1., 0.]
ma = [1., 0.4]
#ma = [1., 0.4, 0.6]
#ma = [1., 0.]
mod = ''#'ma2'
x = arma_generate_sample(ar, ma, 5000)
x_acf = acf(x)[:10]
x_ir = arma_impulse_response(ar, ma)
#print x_acf[:10]
#print x_ir[:10]
#irc2 = np.correlate(x_ir,x_ir,'full')[len(x_ir)-1:]
#print irc2[:10]
#print irc2[:10]/irc2[0]
#print irc2[:10-1] / irc2[1:10]
#print x_acf[:10-1] / x_acf[1:10]
# detrend helper from matplotlib.mlab
def detrend(x, key=None):
if key is None or key=='constant':
return detrend_mean(x)
elif key=='linear':
return detrend_linear(x)
def demean(x, axis=0):
"Return x minus its mean along the specified axis"
x = np.asarray(x)
if axis:
ind = [slice(None)] * axis
ind.append(np.newaxis)
return x - x.mean(axis)[ind]
return x - x.mean(axis)
def detrend_mean(x):
"Return x minus the mean(x)"
return x - x.mean()
def detrend_none(x):
"Return x: no detrending"
return x
def detrend_linear(y):
"Return y minus best fit line; 'linear' detrending "
# This is faster than an algorithm based on linalg.lstsq.
x = np.arange(len(y), dtype=np.float_)
C = np.cov(x, y, bias=1)
b = C[0,1]/C[0,0]
a = y.mean() - b*x.mean()
return y - (b*x + a)
def acovf_explicit(ar, ma, nobs):
'''add correlation of MA representation explicitely
'''
ir = arma_impulse_response(ar, ma)
acovfexpl = [np.dot(ir[:nobs-t], ir[t:nobs]) for t in range(10)]
return acovfexpl
def acovf_arma11(ar, ma):
# ARMA(1,1)
# Florens et al page 278
# wrong result ?
# new calculation bigJudge p 311, now the same
a = -ar[1]
b = ma[1]
#rho = [1.]
#rho.append((1-a*b)*(a-b)/(1.+a**2-2*a*b))
rho = [(1.+b**2+2*a*b)/(1.-a**2)]
rho.append((1+a*b)*(a+b)/(1.-a**2))
for _ in range(8):
last = rho[-1]
rho.append(a*last)
return np.array(rho)
# print acf11[:10]
# print acf11[:10] /acf11[0]
def acovf_ma2(ma):
# MA(2)
# from Greene p616 (with typo), Florens p280
b1 = -ma[1]
b2 = -ma[2]
rho = np.zeros(10)
rho[0] = (1 + b1**2 + b2**2)
rho[1] = (-b1 + b1*b2)
rho[2] = -b2
return rho
# rho2 = rho/rho[0]
# print rho2
# print irc2[:10]/irc2[0]
def acovf_ma1(ma):
# MA(1)
# from Greene p616 (with typo), Florens p280
b = -ma[1]
rho = np.zeros(10)
rho[0] = (1 + b**2)
rho[1] = -b
return rho
# rho2 = rho/rho[0]
# print rho2
# print irc2[:10]/irc2[0]
ar1 = [1., -0.8]
ar0 = [1., 0.]
ma1 = [1., 0.4]
ma2 = [1., 0.4, 0.6]
ma0 = [1., 0.]
comparefn = dict(
[('ma1', acovf_ma1),
('ma2', acovf_ma2),
('arma11', acovf_arma11),
('ar1', acovf_arma11)])
cases = [('ma1', (ar0, ma1)),
('ma2', (ar0, ma2)),
('arma11', (ar1, ma1)),
('ar1', (ar1, ma0))]
for c, args in cases:
ar, ma = args
print('')
print(c, ar, ma)
myacovf = arma_acovf(ar, ma, nobs=10)
myacf = arma_acf(ar, ma, nobs=10)
if c[:2]=='ma':
othacovf = comparefn[c](ma)
else:
othacovf = comparefn[c](ar, ma)
print(myacovf[:5])
print(othacovf[:5])
#something broke again,
#for high persistence case eg ar=0.99, nobs of IR has to be large
#made changes to arma_acovf
assert_array_almost_equal(myacovf, othacovf,10)
assert_array_almost_equal(myacf, othacovf/othacovf[0],10)
#from nitime.utils
def ar_generator(N=512, sigma=1.):
# this generates a signal u(n) = a1*u(n-1) + a2*u(n-2) + ... + v(n)
# where v(n) is a stationary stochastic process with zero mean
# and variance = sigma
# this sequence is shown to be estimated well by an order 8 AR system
taps = np.array([2.7607, -3.8106, 2.6535, -0.9238])
v = np.random.normal(size=N, scale=sigma**0.5)
u = np.zeros(N)
P = len(taps)
for l in range(P):
u[l] = v[l] + np.dot(u[:l][::-1], taps[:l])
for l in range(P,N):
u[l] = v[l] + np.dot(u[l-P:l][::-1], taps)
return u, v, taps
#JP: small differences to using np.correlate, because assumes mean(s)=0
# denominator is N, not N-k, biased estimator
# misnomer: (biased) autocovariance not autocorrelation
#from nitime.utils
def autocorr(s, axis=-1):
"""Returns the autocorrelation of signal s at all lags. Adheres to the
definition r(k) = E{s(n)s*(n-k)} where E{} is the expectation operator.
"""
N = s.shape[axis]
S = np.fft.fft(s, n=2*N-1, axis=axis)
sxx = np.fft.ifft(S*S.conjugate(), axis=axis).real[:N]
return sxx/N
#JP: with valid this returns a single value, if x and y have same length
# e.g. norm_corr(x, x)
# using std subtracts mean, but correlate does not, requires means are exactly 0
# biased, no n-k correction for laglength
#from nitime.utils
def norm_corr(x,y,mode = 'valid'):
"""Returns the correlation between two ndarrays, by calling np.correlate in
'same' mode and normalizing the result by the std of the arrays and by
their lengths. This results in a correlation = 1 for an auto-correlation"""
return ( np.correlate(x,y,mode) /
(np.std(x)*np.std(y)*(x.shape[-1])) )
# from matplotlib axes.py
# note: self is axis
def pltacorr(self, x, **kwargs):
r"""
call signature::
acorr(x, normed=True, detrend=detrend_none, usevlines=True,
maxlags=10, **kwargs)
Plot the autocorrelation of *x*. If *normed* = *True*,
normalize the data by the autocorrelation at 0-th lag. *x* is
detrended by the *detrend* callable (default no normalization).
Data are plotted as ``plot(lags, c, **kwargs)``
Return value is a tuple (*lags*, *c*, *line*) where:
- *lags* are a length 2*maxlags+1 lag vector
- *c* is the 2*maxlags+1 auto correlation vector
- *line* is a :class:`~matplotlib.lines.Line2D` instance
returned by :meth:`plot`
The default *linestyle* is None and the default *marker* is
``'o'``, though these can be overridden with keyword args.
The cross correlation is performed with
:func:`numpy.correlate` with *mode* = 2.
If *usevlines* is *True*, :meth:`~matplotlib.axes.Axes.vlines`
rather than :meth:`~matplotlib.axes.Axes.plot` is used to draw
vertical lines from the origin to the acorr. Otherwise, the
plot style is determined by the kwargs, which are
:class:`~matplotlib.lines.Line2D` properties.
*maxlags* is a positive integer detailing the number of lags
to show. The default value of *None* will return all
:math:`2 \mathrm{len}(x) - 1` lags.
The return value is a tuple (*lags*, *c*, *linecol*, *b*)
where
- *linecol* is the
:class:`~matplotlib.collections.LineCollection`
- *b* is the *x*-axis.
.. seealso::
:meth:`~matplotlib.axes.Axes.plot` or
:meth:`~matplotlib.axes.Axes.vlines`
For documentation on valid kwargs.
**Example:**
:func:`~matplotlib.pyplot.xcorr` above, and
:func:`~matplotlib.pyplot.acorr` below.
**Example:**
.. plot:: mpl_examples/pylab_examples/xcorr_demo.py
"""
return self.xcorr(x, x, **kwargs)
def pltxcorr(self, x, y, normed=True, detrend=detrend_none,
usevlines=True, maxlags=10, **kwargs):
"""
call signature::
def xcorr(self, x, y, normed=True, detrend=detrend_none,
usevlines=True, maxlags=10, **kwargs):
Plot the cross correlation between *x* and *y*. If *normed* =
*True*, normalize the data by the cross correlation at 0-th
lag. *x* and y are detrended by the *detrend* callable
(default no normalization). *x* and *y* must be equal length.
Data are plotted as ``plot(lags, c, **kwargs)``
Return value is a tuple (*lags*, *c*, *line*) where:
- *lags* are a length ``2*maxlags+1`` lag vector
- *c* is the ``2*maxlags+1`` auto correlation vector
- *line* is a :class:`~matplotlib.lines.Line2D` instance
returned by :func:`~matplotlib.pyplot.plot`.
The default *linestyle* is *None* and the default *marker* is
'o', though these can be overridden with keyword args. The
cross correlation is performed with :func:`numpy.correlate`
with *mode* = 2.
If *usevlines* is *True*:
:func:`~matplotlib.pyplot.vlines`
rather than :func:`~matplotlib.pyplot.plot` is used to draw
vertical lines from the origin to the xcorr. Otherwise the
plotstyle is determined by the kwargs, which are
:class:`~matplotlib.lines.Line2D` properties.
The return value is a tuple (*lags*, *c*, *linecol*, *b*)
where *linecol* is the
:class:`matplotlib.collections.LineCollection` instance and
*b* is the *x*-axis.
*maxlags* is a positive integer detailing the number of lags to show.
The default value of *None* will return all ``(2*len(x)-1)`` lags.
**Example:**
:func:`~matplotlib.pyplot.xcorr` above, and
:func:`~matplotlib.pyplot.acorr` below.
**Example:**
.. plot:: mpl_examples/pylab_examples/xcorr_demo.py
"""
Nx = len(x)
if Nx!=len(y):
raise ValueError('x and y must be equal length')
x = detrend(np.asarray(x))
y = detrend(np.asarray(y))
c = np.correlate(x, y, mode=2)
if normed:
c /= np.sqrt(np.dot(x, x) * np.dot(y, y))
if maxlags is None:
maxlags = Nx - 1
if maxlags >= Nx or maxlags < 1:
raise ValueError('maxlags must be None or strictly '
'positive < %d' % Nx)
lags = np.arange(-maxlags,maxlags+1)
c = c[Nx-1-maxlags:Nx+maxlags]
Loading ...