Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

alkaline-ml / statsmodels   python

Repository URL to install this package:

Version: 0.11.1 

/ tools / validation / tests / test_validation.py

from collections import OrderedDict

import numpy as np
import pandas as pd
import pytest

from statsmodels.tools.validation import (array_like, PandasWrapper, bool_like,
                                          dict_like, float_like, int_like,
                                          string_like)

from statsmodels.tools.validation.validation import _right_squeeze


@pytest.fixture(params=[True, False])
def use_pandas(request):
    return request.param


def gen_data(dim, use_pandas):
    if dim == 1:
        out = np.empty(10, )
        if use_pandas:
            out = pd.Series(out)
    elif dim == 2:
        out = np.empty((20, 10))
        if use_pandas:
            out = pd.DataFrame(out)
    else:
        out = np.empty(np.arange(5, 5 + dim))

    return out


class TestArrayLike(object):
    def test_1d(self, use_pandas):
        data = gen_data(1, use_pandas)
        a = array_like(data, 'a')
        assert a.ndim == 1
        assert a.shape == (10,)
        assert type(a) is np.ndarray

        a = array_like(data, 'a', ndim=1)
        assert a.ndim == 1
        a = array_like(data, 'a', shape=(10,))
        assert a.shape == (10,)
        a = array_like(data, 'a', ndim=1, shape=(None,))
        assert a.ndim == 1
        a = array_like(data, 'a', ndim=2, shape=(10, 1))
        assert a.ndim == 2
        assert a.shape == (10, 1)

        with pytest.raises(ValueError, match='a is required to have shape'):
            array_like(data, 'a', shape=(5,))

    def test_2d(self, use_pandas):
        data = gen_data(2, use_pandas)
        a = array_like(data, 'a', ndim=2)
        assert a.ndim == 2
        assert a.shape == (20, 10)
        assert type(a) is np.ndarray

        a = array_like(data, 'a', ndim=2)
        assert a.ndim == 2
        a = array_like(data, 'a', ndim=2, shape=(20, None))
        assert a.shape == (20, 10)
        a = array_like(data, 'a', ndim=2, shape=(20,))
        assert a.shape == (20, 10)
        a = array_like(data, 'a', ndim=2, shape=(None, 10))
        assert a.shape == (20, 10)

        a = array_like(data, 'a', ndim=2, shape=(None, None))
        assert a.ndim == 2
        a = array_like(data, 'a', ndim=3)
        assert a.ndim == 3
        assert a.shape == (20, 10, 1)

        with pytest.raises(ValueError, match='a is required to have shape'):
            array_like(data, 'a', ndim=2, shape=(10,))
        with pytest.raises(ValueError, match='a is required to have shape'):
            array_like(data, 'a', ndim=2, shape=(20, 20))
        with pytest.raises(ValueError, match='a is required to have shape'):
            array_like(data, 'a', ndim=2, shape=(None, 20))
        match = 'a is required to have ndim 1 but has ndim 2'
        with pytest.raises(ValueError, match=match):
            array_like(data, 'a', ndim=1)
        match = 'a must have ndim <= 1'
        with pytest.raises(ValueError, match=match):
            array_like(data, 'a', maxdim=1)

    def test_3d(self):
        data = gen_data(3, False)
        a = array_like(data, 'a', ndim=3)
        assert a.shape == (5, 6, 7)
        assert a.ndim == 3
        assert type(a) is np.ndarray

        a = array_like(data, 'a', ndim=3, shape=(5, None, 7))
        assert a.shape == (5, 6, 7)
        a = array_like(data, 'a', ndim=3, shape=(None, None, 7))
        assert a.shape == (5, 6, 7)
        a = array_like(data, 'a', ndim=5)
        assert a.shape == (5, 6, 7, 1, 1)
        with pytest.raises(ValueError, match='a is required to have shape'):
            array_like(data, 'a', ndim=3, shape=(10,))
        with pytest.raises(ValueError, match='a is required to have shape'):
            array_like(data, 'a', ndim=3, shape=(None, None, 5))
        match = 'a is required to have ndim 2 but has ndim 3'
        with pytest.raises(ValueError, match=match):
            array_like(data, 'a', ndim=2)
        match = 'a must have ndim <= 1'
        with pytest.raises(ValueError, match=match):
            array_like(data, 'a', maxdim=1)
        match = 'a must have ndim <= 2'
        with pytest.raises(ValueError, match=match):
            array_like(data, 'a', maxdim=2)

    def test_right_squeeze_and_pad(self):
        data = np.empty((2, 1, 2))
        a = array_like(data, 'a', ndim=3)
        assert a.shape == (2, 1, 2)
        data = np.empty((2))
        a = array_like(data, 'a', ndim=3)
        assert a.shape == (2, 1, 1)
        data = np.empty((2, 1))
        a = array_like(data, 'a', ndim=3)
        assert a.shape == (2, 1, 1)

        data = np.empty((2, 1, 1, 1))
        a = array_like(data, 'a', ndim=3)
        assert a.shape == (2, 1, 1)

        data = np.empty((2, 1, 1, 2, 1, 1))
        with pytest.raises(ValueError):
            array_like(data, 'a', ndim=3)

    def test_contiguous(self):
        x = np.arange(10)
        y = x[::2]
        a = array_like(y, 'a', contiguous=True)
        assert not y.flags['C_CONTIGUOUS']
        assert a.flags['C_CONTIGUOUS']

    def test_dtype(self):
        x = np.arange(10)
        a = array_like(x, 'a', dtype=np.float32)
        assert a.dtype == np.float32

        a = array_like(x, 'a', dtype=np.uint8)
        assert a.dtype == np.uint8

    @pytest.mark.xfail(reason='Failing for now')
    def test_dot(self, use_pandas):
        data = gen_data(2, use_pandas)
        a = array_like(data, 'a')
        assert not isinstance(a.T.dot(data), array_like)
        assert not isinstance(a.T.dot(a), array_like)

    def test_slice(self, use_pandas):
        data = gen_data(2, use_pandas)
        a = array_like(data, 'a', ndim=2)
        assert type(a[1:]) is np.ndarray


def test_right_squeeze():
    x = np.empty((10, 1, 10))
    y = _right_squeeze(x)
    assert y.shape == (10, 1, 10)

    x = np.empty((10, 10, 1))
    y = _right_squeeze(x)
    assert y.shape == (10, 10)

    x = np.empty((10, 10, 1, 1, 1, 1, 1))
    y = _right_squeeze(x)
    assert y.shape == (10, 10)

    x = np.empty((10, 1, 10, 1, 1, 1, 1, 1))
    y = _right_squeeze(x)
    assert y.shape == (10, 1, 10)


def test_wrap_pandas(use_pandas):
    a = gen_data(1, use_pandas)
    b = gen_data(1, False)

    wrapped = PandasWrapper(a).wrap(b)
    expected_type = pd.Series if use_pandas else np.ndarray
    assert isinstance(wrapped, expected_type)
    assert not use_pandas or wrapped.name is None

    wrapped = PandasWrapper(a).wrap(b, columns='name')
    assert isinstance(wrapped, expected_type)
    assert not use_pandas or wrapped.name == 'name'

    wrapped = PandasWrapper(a).wrap(b, columns=['name'])
    assert isinstance(wrapped, expected_type)
    assert not use_pandas or wrapped.name == 'name'

    expected_type = pd.DataFrame if use_pandas else np.ndarray
    wrapped = PandasWrapper(a).wrap(b[:, None])
    assert isinstance(wrapped, expected_type)
    assert not use_pandas or wrapped.columns[0] == 0

    wrapped = PandasWrapper(a).wrap(b[:, None], columns=['name'])
    assert isinstance(wrapped, expected_type)
    assert not use_pandas or wrapped.columns == ['name']

    if use_pandas:
        match = 'Can only wrap 1 or 2-d array_like'
        with pytest.raises(ValueError, match=match):
            PandasWrapper(a).wrap(b[:, None, None])

        match = 'obj must have the same number of elements in axis 0 as'
        with pytest.raises(ValueError, match=match):
            PandasWrapper(a).wrap(b[:b.shape[0] // 2])


def test_wrap_pandas_append():
    a = gen_data(1, True)
    a.name = 'apple'
    b = gen_data(1, False)
    wrapped = PandasWrapper(a).wrap(b, append='appended')
    expected = 'apple_appended'
    assert wrapped.name == expected

    a = gen_data(2, True)
    a.columns = ['apple_' + str(i) for i in range(a.shape[1])]
    b = gen_data(2, False)
    wrapped = PandasWrapper(a).wrap(b, append='appended')
    expected = [c + '_appended' for c in a.columns]
    assert list(wrapped.columns) == expected


class CustomDict(dict):
    pass


@pytest.fixture(params=(dict, OrderedDict, CustomDict, None))
def dict_type(request):
    return request.param


def test_optional_dict_like(dict_type):
    val = dict_type() if dict_type is not None else dict_type
    out = dict_like(val, 'value', optional=True)
    assert isinstance(out, type(val))


def test_optional_dict_like_error():
    match = r'value must be a dict or dict_like \(i.e., a Mapping\)'
    with pytest.raises(TypeError, match=match):
        dict_like([], 'value', optional=True)
    with pytest.raises(TypeError, match=match):
        dict_like({'a'}, 'value', optional=True)
    with pytest.raises(TypeError, match=match):
        dict_like('a', 'value', optional=True)


def test_string():
    out = string_like('apple', 'value')
    assert out == 'apple'

    out = string_like('apple', 'value', options=('apple', 'banana', 'cherry'))
    assert out == 'apple'

    with pytest.raises(TypeError, match='value must be a string'):
        string_like(1, 'value')
    with pytest.raises(TypeError, match='value must be a string'):
        string_like(b'4', 'value')
    with pytest.raises(ValueError, match='value must be one of: \'apple\','
                                         ' \'banana\', \'cherry\''):
        string_like('date', 'value',
                            options=('apple', 'banana', 'cherry'))


def test_optional_string():
    out = string_like('apple', 'value')
    assert out == 'apple'

    out = string_like('apple', 'value', options=('apple', 'banana', 'cherry'))
    assert out == 'apple'

    out = string_like(None, 'value', optional=True)
    assert out is None

    out = string_like(None, 'value', optional=True,
                      options=('apple', 'banana', 'cherry'))
    assert out is None

    with pytest.raises(TypeError, match='value must be a string'):
        string_like(1, 'value', optional=True)
    with pytest.raises(TypeError, match='value must be a string'):
        string_like(b'4', 'value', optional=True)


@pytest.fixture(params=(1., 1.1, np.float32(1.2), np.array([1.2]), 1.2 + 0j))
def floating(request):
    return request.param


@pytest.fixture(params=(np.empty(2), 1.2 + 1j, True, '3.2', None))
def not_floating(request):
    return request.param


def test_float_like(floating):
    assert isinstance(float_like(floating, 'floating'), float)
    assert isinstance(float_like(floating, 'floating', optional=True), float)
    assert float_like(None, 'floating', optional=True) is None
    if isinstance(floating, (int, np.integer, float, np.inexact)):
        assert isinstance(float_like(floating, 'floating', strict=True), float)
        assert float_like(None, 'floating', optional=True,
                          strict=True) is None


def test_not_float_like(not_floating):
    with pytest.raises(TypeError):
        float_like(not_floating, 'floating')


@pytest.fixture(params=(1., 2, np.float32(3.0), np.array([4.0])))
def integer(request):
    return request.param


@pytest.fixture(params=(3.2, np.float32(3.2), 3 + 2j, np.complex(2.3 + 0j),
                        'apple', 1.0 + 0j, np.timedelta64(2)))
def not_integer(request):
    return request.param


def test_int_like(integer):
    assert isinstance(int_like(integer, 'integer'), int)
    assert isinstance(int_like(integer, 'integer', optional=True), int)
    assert int_like(None, 'floating', optional=True) is None
    if isinstance(integer, (int, np.integer)):
        assert isinstance(int_like(integer, 'integer', strict=True), int)
        assert int_like(None, 'floating', optional=True, strict=True) is None


def test_not_int_like(not_integer):
    with pytest.raises(TypeError):
        int_like(not_integer, 'integer')

Loading ...