import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_equal, assert_raises
from statsmodels.tsa.innovations.arma_innovations import arma_innovations
from statsmodels.tsa.arima.datasets.brockwell_davis_2002 import dowj, lake
from statsmodels.tsa.arima.estimators.burg import burg
@pytest.mark.low_precision('Test against Example 5.1.3 in Brockwell and Davis'
' (2016)')
def test_brockwell_davis_example_513():
# Test against Example 5.1.3 in Brockwell and Davis (2016)
# (low-precision test, since we are testing against values printed in the
# textbook)
# Difference and demean the series
endog = dowj.diff().iloc[1:]
# Burg
res, _ = burg(endog, ar_order=1, demean=True)
assert_allclose(res.ar_params, [0.4371], atol=1e-4)
assert_allclose(res.sigma2, 0.1423, atol=1e-4)
@pytest.mark.low_precision('Test against Example 5.1.4 in Brockwell and Davis'
' (2016)')
def test_brockwell_davis_example_514():
# Test against Example 5.1.4 in Brockwell and Davis (2016)
# (low-precision test, since we are testing against values printed in the
# textbook)
# Get the lake data
endog = lake.copy()
# Should have 98 observations
assert_equal(len(endog), 98)
desired = 9.0041
assert_allclose(endog.mean(), desired, atol=1e-4)
# Burg
res, _ = burg(endog, ar_order=2, demean=True)
assert_allclose(res.ar_params, [1.0449, -0.2456], atol=1e-4)
assert_allclose(res.sigma2, 0.4706, atol=1e-4)
def check_itsmr(lake):
# Test against R itsmr::burg; see results/results_burg.R
res, _ = burg(lake, 10, demean=True)
desired_ar_params = [
1.05853631096, -0.32639150878, 0.04784765122, 0.02620476111,
0.04444511374, -0.04134010262, 0.02251178970, -0.01427524694,
0.22223486915, -0.20935524387]
assert_allclose(res.ar_params, desired_ar_params)
# itsmr always returns the innovations algorithm estimate of sigma2,
# whereas we return Burg's estimate
u, v = arma_innovations(np.array(lake) - np.mean(lake),
ar_params=res.ar_params, sigma2=1)
desired_sigma2 = 0.4458956354
assert_allclose(np.sum(u**2 / v) / len(u), desired_sigma2)
def test_itsmr():
# Note: apparently itsmr automatically demeans (there is no option to
# control this)
endog = lake.copy()
check_itsmr(endog) # Pandas series
check_itsmr(endog.values) # Numpy array
check_itsmr(endog.tolist()) # Python list
def test_nonstationary_series():
# Test against R stats::ar.burg; see results/results_burg.R
endog = np.arange(1, 12) * 1.0
res, _ = burg(endog, 2, demean=False)
desired_ar_params = [1.9669331547, -0.9892846679]
assert_allclose(res.ar_params, desired_ar_params)
desired_sigma2 = 0.02143066427
assert_allclose(res.sigma2, desired_sigma2)
# With var.method = 1, stats::ar.burg also returns something equivalent to
# the innovations algorithm estimate of sigma2
u, v = arma_innovations(endog, ar_params=res.ar_params, sigma2=1)
desired_sigma2 = 0.02191056906
assert_allclose(np.sum(u**2 / v) / len(u), desired_sigma2)
def test_invalid():
endog = np.arange(2) * 1.0
assert_raises(ValueError, burg, endog, ar_order=2)
assert_raises(ValueError, burg, endog, ar_order=-1)
assert_raises(ValueError, burg, endog, ar_order=1.5)
endog = np.arange(10) * 1.0
assert_raises(ValueError, burg, endog, ar_order=[1, 3])
def test_misc():
# Test defaults (order = 0, demean=True)
endog = lake.copy()
res, _ = burg(endog)
assert_allclose(res.params, np.var(endog))
# Test that integer input gives the same result as float-coerced input.
endog = np.array([1, 2, 5, 3, -2, 1, -3, 5, 2, 3, -1], dtype=int)
res_int, _ = burg(endog, 2)
res_float, _ = burg(endog * 1.0, 2)
assert_allclose(res_int.params, res_float.params)