Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

alkaline-ml / statsmodels   python

Repository URL to install this package:

Version: 0.11.1 

/ tsa / arima / estimators / tests / test_gls.py

import numpy as np

import pytest
from numpy.testing import (
    assert_, assert_allclose, assert_equal, assert_warns, assert_raises)

from statsmodels.tsa.arima.datasets.brockwell_davis_2002 import lake, oshorts
from statsmodels.tsa.arima.estimators.gls import gls

@pytest.mark.low_precision('Test against Example 6.6.1 in Brockwell and Davis'
                           ' (2016)')
def test_brockwell_davis_example_661():
    endog = oshorts.copy()
    exog = np.ones_like(endog)

    # Here we restrict the iterations to 1 and test against the values in the
    # text (set tolerance=1 to suppress to warning that it didn't converge)
    res, _ = gls(endog, exog, order=(0, 0, 1), max_iter=1, tolerance=1)
    assert_allclose(res.exog_params, -4.745, atol=1e-3)
    assert_allclose(res.ma_params, -0.818, atol=1e-3)
    assert_allclose(res.sigma2, 2041, atol=1)

    # Here we do not restrict the iterations and test against the values in
    # the last row of Table 6.2 (note: this table does not report sigma2)
    res, _ = gls(endog, exog, order=(0, 0, 1))
    assert_allclose(res.exog_params, -4.780, atol=1e-3)
    assert_allclose(res.ma_params, -0.848, atol=1e-3)


@pytest.mark.low_precision('Test against Example 6.6.2 in Brockwell and Davis'
                           ' (2016)')
def test_brockwell_davis_example_662():
    endog = lake.copy()
    exog = np.c_[np.ones_like(endog), np.arange(1, len(endog) + 1) * 1.0]

    res, _ = gls(endog, exog, order=(2, 0, 0))

    # Parameter values taken from Table 6.3 row 2, except for sigma2 and the
    # last digit of the exog_params[0], which were given in the text
    assert_allclose(res.exog_params, [10.091, -.0216], atol=1e-3)
    assert_allclose(res.ar_params, [1.005, -.291], atol=1e-3)
    assert_allclose(res.sigma2, .4571, atol=1e-3)


def test_integrated():
    # Get the lake data
    endog1 = lake.copy()
    exog1 = np.c_[np.ones_like(endog1), np.arange(1, len(endog1) + 1) * 1.0]

    endog2 = np.r_[0, np.cumsum(endog1)]
    exog2 = np.c_[[0, 0], np.cumsum(exog1, axis=0).T].T

    # Estimate without integration
    p1, _ = gls(endog1, exog1, order=(1, 0, 0))

    # Estimate with integration
    with assert_warns(UserWarning):
        p2, _ = gls(endog2, exog2, order=(1, 1, 0))

    assert_allclose(p1.params, p2.params)


def test_integrated_invalid():
    # Test for invalid versions of integrated model
    # - include_constant=True is invalid if integration is present
    endog = lake.copy()
    exog = np.arange(1, len(endog) + 1) * 1.0
    assert_raises(ValueError, gls, endog, exog, order=(1, 1, 0),
                  include_constant=True)


def test_results():
    endog = lake.copy()
    exog = np.c_[np.ones_like(endog), np.arange(1, len(endog) + 1) * 1.0]

    # Test for results output
    p, res = gls(endog, exog, order=(1, 0, 0))

    assert_('params' in res)
    assert_('converged' in res)
    assert_('differences' in res)
    assert_('iterations' in res)
    assert_('arma_estimator' in res)
    assert_('arma_results' in res)

    assert_(res.converged)
    assert_(res.iterations > 0)
    assert_equal(res.arma_estimator, 'innovations_mle')
    assert_equal(len(res.params), res.iterations + 1)
    assert_equal(len(res.differences), res.iterations + 1)
    assert_equal(len(res.arma_results), res.iterations + 1)
    assert_equal(res.params[-1], p)


def test_iterations():
    endog = lake.copy()
    exog = np.c_[np.ones_like(endog), np.arange(1, len(endog) + 1) * 1.0]

    # Test for n_iter usage
    _, res = gls(endog, exog, order=(1, 0, 0), n_iter=1)
    assert_equal(res.iterations, 1)
    assert_equal(res.converged, None)


def test_misc():
    endog = lake.copy()
    exog = np.c_[np.ones_like(endog), np.arange(1, len(endog) + 1) * 1.0]

    # Test for warning if iterations fail to converge
    assert_warns(UserWarning, gls, endog, exog, order=(2, 0, 0), max_iter=0)


@pytest.mark.todo('Low priority: test full GLS against another package')
@pytest.mark.smoke
def test_alternate_arma_estimators_valid():
    # Test that we can use (valid) alternate ARMA estimators
    # Note that this does not test the results of the alternative estimators,
    # and so it is labeled as a smoke test / TODO. However, assuming those
    # estimators are tested elsewhere, the main testable concern from their
    # inclusion in the feasible GLS step is that produce results at all.
    # Thus, for example, we specify n_iter=1, and ignore the actual results.
    # Nonetheless, it would be good to test against another package.

    endog = lake.copy()
    exog = np.c_[np.ones_like(endog), np.arange(1, len(endog) + 1) * 1.0]

    _, res_yw = gls(endog, exog=exog, order=(1, 0, 0),
                    arma_estimator='yule_walker', n_iter=1)
    assert_equal(res_yw.arma_estimator, 'yule_walker')

    _, res_b = gls(endog, exog=exog, order=(1, 0, 0),
                   arma_estimator='burg', n_iter=1)
    assert_equal(res_b.arma_estimator, 'burg')

    _, res_i = gls(endog, exog=exog, order=(0, 0, 1),
                   arma_estimator='innovations', n_iter=1)
    assert_equal(res_i.arma_estimator, 'innovations')

    _, res_hr = gls(endog, exog=exog, order=(1, 0, 1),
                    arma_estimator='hannan_rissanen', n_iter=1)
    assert_equal(res_hr.arma_estimator, 'hannan_rissanen')

    _, res_ss = gls(endog, exog=exog, order=(1, 0, 1),
                    arma_estimator='statespace', n_iter=1)
    assert_equal(res_ss.arma_estimator, 'statespace')

    # Finally, default method is innovations
    _, res_imle = gls(endog, exog=exog, order=(1, 0, 1), n_iter=1)
    assert_equal(res_imle.arma_estimator, 'innovations_mle')


def test_alternate_arma_estimators_invalid():
    # Test that specifying an invalid ARMA estimators raises an error
    endog = lake.copy()
    exog = np.c_[np.ones_like(endog), np.arange(1, len(endog) + 1) * 1.0]

    # Test for invalid estimator
    assert_raises(ValueError, gls, endog, exog, order=(0, 0, 1),
                  arma_estimator='invalid_estimator')

    # Yule-Walker, Burg can only handle consecutive AR
    assert_raises(ValueError, gls, endog, exog, order=(0, 0, 1),
                  arma_estimator='yule_walker')
    assert_raises(ValueError, gls, endog, exog, order=(0, 0, 0),
                  seasonal_order=(1, 0, 0, 4), arma_estimator='yule_walker')
    assert_raises(ValueError, gls, endog, exog, order=([0, 1], 0, 0),
                  arma_estimator='yule_walker')

    assert_raises(ValueError, gls, endog, exog, order=(0, 0, 1),
                  arma_estimator='burg')
    assert_raises(ValueError, gls, endog, exog, order=(0, 0, 0),
                  seasonal_order=(1, 0, 0, 4), arma_estimator='burg')
    assert_raises(ValueError, gls, endog, exog, order=([0, 1], 0, 0),
                  arma_estimator='burg')

    # Innovations (MA) can only handle consecutive MA
    assert_raises(ValueError, gls, endog, exog, order=(1, 0, 0),
                  arma_estimator='innovations')
    assert_raises(ValueError, gls, endog, exog, order=(0, 0, 0),
                  seasonal_order=(0, 0, 1, 4), arma_estimator='innovations')
    assert_raises(ValueError, gls, endog, exog, order=(0, 0, [0, 1]),
                  arma_estimator='innovations')

    # Hannan-Rissanen can't handle seasonal components
    assert_raises(ValueError, gls, endog, exog, order=(0, 0, 0),
                  seasonal_order=(0, 0, 1, 4),
                  arma_estimator='hannan_rissanen')


def test_arma_kwargs():
    endog = lake.copy()
    exog = np.c_[np.ones_like(endog), np.arange(1, len(endog) + 1) * 1.0]

    # Test with the default method for scipy.optimize.minimize (BFGS)
    _, res1_imle = gls(endog, exog=exog, order=(1, 0, 1), n_iter=1)
    assert_equal(res1_imle.arma_estimator_kwargs, {})
    assert_equal(res1_imle.arma_results[1].minimize_results.message,
                 'Optimization terminated successfully.')

    # Now specify a different method (L-BFGS-B)
    arma_estimator_kwargs = {'minimize_kwargs': {'method': 'L-BFGS-B'}}
    _, res2_imle = gls(endog, exog=exog, order=(1, 0, 1), n_iter=1,
                       arma_estimator_kwargs=arma_estimator_kwargs)
    assert_equal(res2_imle.arma_estimator_kwargs, arma_estimator_kwargs)
    assert_equal(res2_imle.arma_results[1].minimize_results.message,
                 b'CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH')