Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

alkaline-ml / statsmodels   python

Repository URL to install this package:

Version: 0.11.1 

/ tsa / arima / estimators / tests / test_statespace.py

import numpy as np

from numpy.testing import assert_allclose, assert_raises

from statsmodels.tools.tools import add_constant
from statsmodels.tsa.statespace import sarimax
from statsmodels.tsa.arima.datasets.brockwell_davis_2002 import lake
from statsmodels.tsa.arima.estimators.statespace import statespace


def test_basic():
    endog = lake.copy()
    exog = np.arange(1, len(endog) + 1) * 1.0

    # Test default options (include_constant=True, concentrate_scale=False)
    p, res = statespace(endog, exog=exog, order=(1, 0, 0),
                        include_constant=True, concentrate_scale=False)

    mod_ss = sarimax.SARIMAX(endog, exog=add_constant(exog), order=(1, 0, 0))
    res_ss = mod_ss.filter(p.params)

    assert_allclose(res.statespace_results.llf, res_ss.llf)

    # Test include_constant=False
    p, res = statespace(endog, exog=exog, order=(1, 0, 0),
                        include_constant=False, concentrate_scale=False)

    mod_ss = sarimax.SARIMAX(endog, exog=exog, order=(1, 0, 0))
    res_ss = mod_ss.filter(p.params)

    assert_allclose(res.statespace_results.llf, res_ss.llf)

    # Test concentrate_scale=True
    p, res = statespace(endog, exog=exog, order=(1, 0, 0),
                        include_constant=True, concentrate_scale=True)

    mod_ss = sarimax.SARIMAX(endog, exog=add_constant(exog), order=(1, 0, 0),
                             concentrate_scale=True)
    res_ss = mod_ss.filter(p.params)

    assert_allclose(res.statespace_results.llf, res_ss.llf)


def test_start_params():
    endog = lake.copy()

    # Test for valid use of starting parameters
    p, _ = statespace(endog, order=(1, 0, 0), start_params=[0, 0, 1.])
    p, _ = statespace(endog, order=(1, 0, 0), start_params=[0, 1., 1.],
                      enforce_stationarity=False)
    p, _ = statespace(endog, order=(0, 0, 1), start_params=[0, 1., 1.],
                      enforce_invertibility=False)

    # Test for invalid use of starting parameters
    assert_raises(ValueError, statespace, endog, order=(1, 0, 0),
                  start_params=[0, 1., 1.])
    assert_raises(ValueError, statespace, endog, order=(0, 0, 1),
                  start_params=[0, 1., 1.])