"""ARMA process and estimation with scipy.signal.lfilter
Notes
-----
* written without textbook, works but not sure about everything
briefly checked and it looks to be standard least squares, see below
* theoretical autocorrelation function of general ARMA
Done, relatively easy to guess solution, time consuming to get
theoretical test cases, example file contains explicit formulas for
acovf of MA(1), MA(2) and ARMA(1,1)
Properties:
Judge, ... (1985): The Theory and Practise of Econometrics
Author: josefpktd
License: BSD
"""
from statsmodels.compat.pandas import deprecate_kwarg
import numpy as np
from scipy import signal, optimize, linalg
from statsmodels.compat.pandas import Appender
from statsmodels.tools.docstring import remove_parameters, Docstring
from statsmodels.tools.validation import array_like
__all__ = ['arma_acf', 'arma_acovf', 'arma_generate_sample',
'arma_impulse_response', 'arma2ar', 'arma2ma', 'deconvolve',
'lpol2index', 'index2lpol']
# Remove after 0.11
@deprecate_kwarg('sigma', 'scale')
def arma_generate_sample(ar, ma, nsample, scale=1, distrvs=None,
axis=0, burnin=0):
"""
Simulate data from an ARMA.
Parameters
----------
ar : array_like
The coefficient for autoregressive lag polynomial, including zero lag.
ma : array_like
The coefficient for moving-average lag polynomial, including zero lag.
nsample : int or tuple of ints
If nsample is an integer, then this creates a 1d timeseries of
length size. If nsample is a tuple, creates a len(nsample)
dimensional time series where time is indexed along the input
variable ``axis``. All series are unless ``distrvs`` generates
dependent data.
scale : float
The standard deviation of noise.
distrvs : function, random number generator
A function that generates the random numbers, and takes sample size
as argument. The default is np.random.randn.
axis : int
See nsample for details.
burnin : int
Number of observation at the beginning of the sample to drop.
Used to reduce dependence on initial values.
Returns
-------
ndarray
Random sample(s) from an ARMA process.
Notes
-----
As mentioned above, both the AR and MA components should include the
coefficient on the zero-lag. This is typically 1. Further, due to the
conventions used in signal processing used in signal.lfilter vs.
conventions in statistics for ARMA processes, the AR parameters should
have the opposite sign of what you might expect. See the examples below.
Examples
--------
>>> import numpy as np
>>> np.random.seed(12345)
>>> arparams = np.array([.75, -.25])
>>> maparams = np.array([.65, .35])
>>> ar = np.r_[1, -arparams] # add zero-lag and negate
>>> ma = np.r_[1, maparams] # add zero-lag
>>> y = sm.tsa.arma_generate_sample(ar, ma, 250)
>>> model = sm.tsa.ARMA(y, (2, 2)).fit(trend='nc', disp=0)
>>> model.params
array([ 0.79044189, -0.23140636, 0.70072904, 0.40608028])
"""
distrvs = np.random.normal if distrvs is None else distrvs
if np.ndim(nsample) == 0:
nsample = [nsample]
if burnin:
# handle burin time for nd arrays
# maybe there is a better trick in scipy.fft code
newsize = list(nsample)
newsize[axis] += burnin
newsize = tuple(newsize)
fslice = [slice(None)] * len(newsize)
fslice[axis] = slice(burnin, None, None)
fslice = tuple(fslice)
else:
newsize = tuple(nsample)
fslice = tuple([slice(None)] * np.ndim(newsize))
eta = scale * distrvs(size=newsize)
return signal.lfilter(ma, ar, eta, axis=axis)[fslice]
def arma_acovf(ar, ma, nobs=10, sigma2=1, dtype=None):
"""
Theoretical autocovariance function of ARMA process.
Parameters
----------
ar : array_like, 1d
The coefficients for autoregressive lag polynomial, including zero lag.
ma : array_like, 1d
The coefficients for moving-average lag polynomial, including zero lag.
nobs : int
The number of terms (lags plus zero lag) to include in returned acovf.
sigma2 : float
Variance of the innovation term.
Returns
-------
ndarray
The autocovariance of ARMA process given by ar, ma.
See Also
--------
arma_acf : Autocorrelation function for ARMA processes.
acovf : Sample autocovariance estimation.
References
----------
.. [*] Brockwell, Peter J., and Richard A. Davis. 2009. Time Series:
Theory and Methods. 2nd ed. 1991. New York, NY: Springer.
"""
if dtype is None:
dtype = np.common_type(np.array(ar), np.array(ma), np.array(sigma2))
p = len(ar) - 1
q = len(ma) - 1
m = max(p, q) + 1
if sigma2.real < 0:
raise ValueError('Must have positive innovation variance.')
# Short-circuit for trivial corner-case
if p == q == 0:
out = np.zeros(nobs, dtype=dtype)
out[0] = sigma2
return out
# Get the moving average representation coefficients that we need
ma_coeffs = arma2ma(ar, ma, lags=m)
# Solve for the first m autocovariances via the linear system
# described by (BD, eq. 3.3.8)
A = np.zeros((m, m), dtype=dtype)
b = np.zeros((m, 1), dtype=dtype)
# We need a zero-right-padded version of ar params
tmp_ar = np.zeros(m, dtype=dtype)
tmp_ar[:p + 1] = ar
for k in range(m):
A[k, :(k + 1)] = tmp_ar[:(k + 1)][::-1]
A[k, 1:m - k] += tmp_ar[(k + 1):m]
b[k] = sigma2 * np.dot(ma[k:q + 1], ma_coeffs[:max((q + 1 - k), 0)])
acovf = np.zeros(max(nobs, m), dtype=dtype)
acovf[:m] = np.linalg.solve(A, b)[:, 0]
# Iteratively apply (BD, eq. 3.3.9) to solve for remaining autocovariances
if nobs > m:
zi = signal.lfiltic([1], ar, acovf[:m:][::-1])
acovf[m:] = signal.lfilter([1], ar, np.zeros(nobs - m, dtype=dtype),
zi=zi)[0]
return acovf[:nobs]
# Remove after 0.11
@deprecate_kwarg('nobs', 'lags')
def arma_acf(ar, ma, lags=10):
"""
Theoretical autocorrelation function of an ARMA process.
Parameters
----------
ar : array_like
Coefficients for autoregressive lag polynomial, including zero lag.
ma : array_like
Coefficients for moving-average lag polynomial, including zero lag.
lags : int
The number of terms (lags plus zero lag) to include in returned acf.
Returns
-------
ndarray
The autocorrelations of ARMA process given by ar and ma.
See Also
--------
arma_acovf : Autocovariances from ARMA processes.
acf : Sample autocorrelation function estimation.
acovf : Sample autocovariance function estimation.
"""
acovf = arma_acovf(ar, ma, lags)
return acovf / acovf[0]
# Remove after 0.11
@deprecate_kwarg('nobs', 'lags')
def arma_pacf(ar, ma, lags=10):
"""
Theoretical partial autocorrelation function of an ARMA process.
Parameters
----------
ar : array_like, 1d
The coefficients for autoregressive lag polynomial, including zero lag.
ma : array_like, 1d
The coefficients for moving-average lag polynomial, including zero lag.
lags : int
The number of terms (lags plus zero lag) to include in returned pacf.
Returns
-------
ndarrray
The partial autocorrelation of ARMA process given by ar and ma.
Notes
-----
Solves yule-walker equation for each lag order up to nobs lags.
not tested/checked yet
"""
# TODO: Should use rank 1 inverse update
apacf = np.zeros(lags)
acov = arma_acf(ar, ma, lags=lags + 1)
apacf[0] = 1.
for k in range(2, lags + 1):
r = acov[:k]
apacf[k - 1] = linalg.solve(linalg.toeplitz(r[:-1]), r[1:])[-1]
return apacf
def arma_periodogram(ar, ma, worN=None, whole=0):
"""
Periodogram for ARMA process given by lag-polynomials ar and ma.
Parameters
----------
ar : array_like
The autoregressive lag-polynomial with leading 1 and lhs sign.
ma : array_like
The moving average lag-polynomial with leading 1.
worN : {None, int}, optional
An option for scipy.signal.freqz (read "w or N").
If None, then compute at 512 frequencies around the unit circle.
If a single integer, the compute at that many frequencies.
Otherwise, compute the response at frequencies given in worN.
whole : {0,1}, optional
An options for scipy.signal.freqz/
Normally, frequencies are computed from 0 to pi (upper-half of
unit-circle. If whole is non-zero compute frequencies from 0 to 2*pi.
Returns
-------
w : ndarray
The frequencies.
sd : ndarray
The periodogram, also known as the spectral density.
Notes
-----
Normalization ?
This uses signal.freqz, which does not use fft. There is a fft version
somewhere.
"""
w, h = signal.freqz(ma, ar, worN=worN, whole=whole)
sd = np.abs(h) ** 2 / np.sqrt(2 * np.pi)
if np.any(np.isnan(h)):
# this happens with unit root or seasonal unit root'
import warnings
warnings.warn('Warning: nan in frequency response h, maybe a unit '
'root', RuntimeWarning)
return w, sd
# Remove after 0.11
@deprecate_kwarg('nobs', 'leads')
def arma_impulse_response(ar, ma, leads=100):
"""
Compute the impulse response function (MA representation) for ARMA process.
Parameters
----------
ar : array_like, 1d
The auto regressive lag polynomial.
ma : array_like, 1d
The moving average lag polynomial.
leads : int
The number of observations to calculate.
Returns
-------
ndarray
The impulse response function with nobs elements.
Notes
-----
This is the same as finding the MA representation of an ARMA(p,q).
By reversing the role of ar and ma in the function arguments, the
returned result is the AR representation of an ARMA(p,q), i.e
ma_representation = arma_impulse_response(ar, ma, leads=100)
ar_representation = arma_impulse_response(ma, ar, leads=100)
Fully tested against matlab
Examples
--------
AR(1)
>>> arma_impulse_response([1.0, -0.8], [1.], leads=10)
array([ 1. , 0.8 , 0.64 , 0.512 , 0.4096 ,
0.32768 , 0.262144 , 0.2097152 , 0.16777216, 0.13421773])
this is the same as
>>> 0.8**np.arange(10)
array([ 1. , 0.8 , 0.64 , 0.512 , 0.4096 ,
0.32768 , 0.262144 , 0.2097152 , 0.16777216, 0.13421773])
MA(2)
>>> arma_impulse_response([1.0], [1., 0.5, 0.2], leads=10)
array([ 1. , 0.5, 0.2, 0. , 0. , 0. , 0. , 0. , 0. , 0. ])
ARMA(1,2)
>>> arma_impulse_response([1.0, -0.8], [1., 0.5, 0.2], leads=10)
array([ 1. , 1.3 , 1.24 , 0.992 , 0.7936 ,
0.63488 , 0.507904 , 0.4063232 , 0.32505856, 0.26004685])
Loading ...