Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

alkaline-ml / statsmodels   python

Repository URL to install this package:

Version: 0.11.1 

/ tsa / stattools.py

"""
Statistical tools for time series analysis
"""
from statsmodels.compat.python import iteritems, lrange, lzip
from statsmodels.compat.pandas import deprecate_kwarg
from statsmodels.compat.numpy import lstsq
from statsmodels.compat.scipy import _next_regular

import numpy as np
from numpy.linalg import LinAlgError
from scipy import stats
import pandas as pd

from statsmodels.regression.linear_model import OLS, yule_walker
from statsmodels.tools.sm_exceptions import (InterpolationWarning,
                                             MissingDataError,
                                             CollinearityWarning)
from statsmodels.tools.tools import add_constant, Bunch
from statsmodels.tools.validation import (array_like, string_like, bool_like,
                                          int_like, dict_like, float_like)
from statsmodels.tsa._bds import bds
from statsmodels.tsa._innovations import innovations_filter, innovations_algo
from statsmodels.tsa.adfvalues import mackinnonp, mackinnoncrit
from statsmodels.tsa.arima_model import ARMA
from statsmodels.tsa.tsatools import lagmat, lagmat2ds, add_trend

__all__ = ['acovf', 'acf', 'pacf', 'pacf_yw', 'pacf_ols', 'ccovf', 'ccf',
           'periodogram', 'q_stat', 'coint', 'arma_order_select_ic',
           'adfuller', 'kpss', 'bds', 'pacf_burg', 'innovations_algo',
           'innovations_filter', 'levinson_durbin_pacf', 'levinson_durbin',
           'zivot_andrews']

SQRTEPS = np.sqrt(np.finfo(np.double).eps)


#NOTE: now in two places to avoid circular import
#TODO: I like the bunch pattern for this too.
class ResultsStore(object):
    def __str__(self):
        return self._str  # pylint: disable=E1101


def _autolag(mod, endog, exog, startlag, maxlag, method, modargs=(),
             fitargs=(), regresults=False):
    """
    Returns the results for the lag length that maximizes the info criterion.

    Parameters
    ----------
    mod : Model class
        Model estimator class
    endog : array_like
        nobs array containing endogenous variable
    exog : array_like
        nobs by (startlag + maxlag) array containing lags and possibly other
        variables
    startlag : int
        The first zero-indexed column to hold a lag.  See Notes.
    maxlag : int
        The highest lag order for lag length selection.
    method : {'aic', 'bic', 't-stat'}
        aic - Akaike Information Criterion
        bic - Bayes Information Criterion
        t-stat - Based on last lag
    modargs : tuple, optional
        args to pass to model.  See notes.
    fitargs : tuple, optional
        args to pass to fit.  See notes.
    regresults : bool, optional
        Flag indicating to return optional return results

    Returns
    -------
    icbest : float
        Best information criteria.
    bestlag : int
        The lag length that maximizes the information criterion.
    results : dict, optional
        Dictionary containing all estimation results

    Notes
    -----
    Does estimation like mod(endog, exog[:,:i], *modargs).fit(*fitargs)
    where i goes from lagstart to lagstart+maxlag+1.  Therefore, lags are
    assumed to be in contiguous columns from low to high lag length with
    the highest lag in the last column.
    """
    #TODO: can tcol be replaced by maxlag + 2?
    #TODO: This could be changed to laggedRHS and exog keyword arguments if
    #    this will be more general.

    results = {}
    method = method.lower()
    for lag in range(startlag, startlag + maxlag + 1):
        mod_instance = mod(endog, exog[:, :lag], *modargs)
        results[lag] = mod_instance.fit()

    if method == "aic":
        icbest, bestlag = min((v.aic, k) for k, v in iteritems(results))
    elif method == "bic":
        icbest, bestlag = min((v.bic, k) for k, v in iteritems(results))
    elif method == "t-stat":
        #stop = stats.norm.ppf(.95)
        stop = 1.6448536269514722
        for lag in range(startlag + maxlag, startlag - 1, -1):
            icbest = np.abs(results[lag].tvalues[-1])
            if np.abs(icbest) >= stop:
                bestlag = lag
                icbest = icbest
                break
    else:
        raise ValueError("Information Criterion %s not understood.") % method

    if not regresults:
        return icbest, bestlag
    else:
        return icbest, bestlag, results


#this needs to be converted to a class like HetGoldfeldQuandt,
# 3 different returns are a mess
# See:
#Ng and Perron(2001), Lag length selection and the construction of unit root
#tests with good size and power, Econometrica, Vol 69 (6) pp 1519-1554
#TODO: include drift keyword, only valid with regression == "c"
# just changes the distribution of the test statistic to a t distribution
#TODO: autolag is untested
def adfuller(x, maxlag=None, regression="c", autolag='AIC',
             store=False, regresults=False):
    """
    Augmented Dickey-Fuller unit root test.

    The Augmented Dickey-Fuller test can be used to test for a unit root in a
    univariate process in the presence of serial correlation.

    Parameters
    ----------
    x : array_like, 1d
        The data series to test.
    maxlag : int
        Maximum lag which is included in test, default 12*(nobs/100)^{1/4}.
    regression : {'c','ct','ctt','nc'}
        Constant and trend order to include in regression.

        * 'c' : constant only (default).
        * 'ct' : constant and trend.
        * 'ctt' : constant, and linear and quadratic trend.
        * 'nc' : no constant, no trend.

    autolag : {'AIC', 'BIC', 't-stat', None}
        Method to use when automatically determining the lag.

        * if None, then maxlag lags are used.
        * if 'AIC' (default) or 'BIC', then the number of lags is chosen
          to minimize the corresponding information criterion.
        * 't-stat' based choice of maxlag.  Starts with maxlag and drops a
          lag until the t-statistic on the last lag length is significant
          using a 5%-sized test.
    store : bool
        If True, then a result instance is returned additionally to
        the adf statistic. Default is False.
    regresults : bool, optional
        If True, the full regression results are returned. Default is False.

    Returns
    -------
    adf : float
        The test statistic.
    pvalue : float
        MacKinnon's approximate p-value based on MacKinnon (1994, 2010).
    usedlag : int
        The number of lags used.
    nobs : int
        The number of observations used for the ADF regression and calculation
        of the critical values.
    critical values : dict
        Critical values for the test statistic at the 1 %, 5 %, and 10 %
        levels. Based on MacKinnon (2010).
    icbest : float
        The maximized information criterion if autolag is not None.
    resstore : ResultStore, optional
        A dummy class with results attached as attributes.

    Notes
    -----
    The null hypothesis of the Augmented Dickey-Fuller is that there is a unit
    root, with the alternative that there is no unit root. If the pvalue is
    above a critical size, then we cannot reject that there is a unit root.

    The p-values are obtained through regression surface approximation from
    MacKinnon 1994, but using the updated 2010 tables. If the p-value is close
    to significant, then the critical values should be used to judge whether
    to reject the null.

    The autolag option and maxlag for it are described in Greene.

    References
    ----------
    .. [1] W. Green.  "Econometric Analysis," 5th ed., Pearson, 2003.

    .. [2] Hamilton, J.D.  "Time Series Analysis".  Princeton, 1994.

    .. [3] MacKinnon, J.G. 1994.  "Approximate asymptotic distribution functions for
        unit-root and cointegration tests.  `Journal of Business and Economic
        Statistics` 12, 167-76.

    .. [4] MacKinnon, J.G. 2010. "Critical Values for Cointegration Tests."  Queen's
        University, Dept of Economics, Working Papers.  Available at
        http://ideas.repec.org/p/qed/wpaper/1227.html

    Examples
    --------
    See example notebook
    """
    x = array_like(x, 'x')
    maxlag = int_like(maxlag, 'maxlag', optional=True)
    regression = string_like(regression, 'regression',
                             options=('c', 'ct', 'ctt', 'nc'))
    autolag = string_like(autolag, 'autolag', optional=True,
                          options=('aic', 'bic', 't-stat'))
    store = bool_like(store, 'store')
    regresults = bool_like(regresults, 'regresults')

    if regresults:
        store = True

    trenddict = {None: 'nc', 0: 'c', 1: 'ct', 2: 'ctt'}
    if regression is None or isinstance(regression, int):
        regression = trenddict[regression]
    regression = regression.lower()
    nobs = x.shape[0]

    ntrend = len(regression) if regression != 'nc' else 0
    if maxlag is None:
        # from Greene referencing Schwert 1989
        maxlag = int(np.ceil(12. * np.power(nobs / 100., 1 / 4.)))
        # -1 for the diff
        maxlag = min(nobs // 2 - ntrend - 1, maxlag)
        if maxlag < 0:
            raise ValueError('sample size is too short to use selected '
                             'regression component')
    elif maxlag > nobs // 2 - ntrend - 1:
        raise ValueError('maxlag must be less than (nobs/2 - 1 - ntrend) '
                         'where n trend is the number of included '
                         'deterministic regressors')
    xdiff = np.diff(x)
    xdall = lagmat(xdiff[:, None], maxlag, trim='both', original='in')
    nobs = xdall.shape[0]

    xdall[:, 0] = x[-nobs - 1:-1]  # replace 0 xdiff with level of x
    xdshort = xdiff[-nobs:]

    if store:
        resstore = ResultsStore()
    if autolag:
        if regression != 'nc':
            fullRHS = add_trend(xdall, regression, prepend=True)
        else:
            fullRHS = xdall
        startlag = fullRHS.shape[1] - xdall.shape[1] + 1
        # 1 for level
        # search for lag length with smallest information criteria
        # Note: use the same number of observations to have comparable IC
        # aic and bic: smaller is better

        if not regresults:
            icbest, bestlag = _autolag(OLS, xdshort, fullRHS, startlag,
                                       maxlag, autolag)
        else:
            icbest, bestlag, alres = _autolag(OLS, xdshort, fullRHS, startlag,
                                              maxlag, autolag,
                                              regresults=regresults)
            resstore.autolag_results = alres

        bestlag -= startlag  # convert to lag not column index

        # rerun ols with best autolag
        xdall = lagmat(xdiff[:, None], bestlag, trim='both', original='in')
        nobs = xdall.shape[0]
        xdall[:, 0] = x[-nobs - 1:-1]  # replace 0 xdiff with level of x
        xdshort = xdiff[-nobs:]
        usedlag = bestlag
    else:
        usedlag = maxlag
        icbest = None
    if regression != 'nc':
        resols = OLS(xdshort, add_trend(xdall[:, :usedlag + 1],
                     regression)).fit()
    else:
        resols = OLS(xdshort, xdall[:, :usedlag + 1]).fit()

    adfstat = resols.tvalues[0]
#    adfstat = (resols.params[0]-1.0)/resols.bse[0]
    # the "asymptotically correct" z statistic is obtained as
    # nobs/(1-np.sum(resols.params[1:-(trendorder+1)])) (resols.params[0] - 1)
    # I think this is the statistic that is used for series that are integrated
    # for orders higher than I(1), ie., not ADF but cointegration tests.

    # Get approx p-value and critical values
    pvalue = mackinnonp(adfstat, regression=regression, N=1)
    critvalues = mackinnoncrit(N=1, regression=regression, nobs=nobs)
    critvalues = {"1%" : critvalues[0], "5%" : critvalues[1],
                  "10%" : critvalues[2]}
    if store:
        resstore.resols = resols
        resstore.maxlag = maxlag
        resstore.usedlag = usedlag
        resstore.adfstat = adfstat
        resstore.critvalues = critvalues
        resstore.nobs = nobs
        resstore.H0 = ("The coefficient on the lagged level equals 1 - "
                       "unit root")
        resstore.HA = "The coefficient on the lagged level < 1 - stationary"
        resstore.icbest = icbest
        resstore._str = 'Augmented Dickey-Fuller Test Results'
        return adfstat, pvalue, critvalues, resstore
    else:
        if not autolag:
            return adfstat, pvalue, usedlag, nobs, critvalues
        else:
            return adfstat, pvalue, usedlag, nobs, critvalues, icbest


def acovf(x, unbiased=False, demean=True, fft=None, missing='none', nlag=None):
    """
    Estimate autocovariances.

    Parameters
    ----------
    x : array_like
        Time series data. Must be 1d.
    unbiased : bool
        If True, then denominators is n-k, otherwise n.
    demean : bool
        If True, then subtract the mean x from each element of x.
    fft : bool
        If True, use FFT convolution.  This method should be preferred
        for long time series.
    missing : str
        A string in ['none', 'raise', 'conservative', 'drop'] specifying how
        the NaNs are to be treated.
    nlag : {int, None}
        Limit the number of autocovariances returned.  Size of returned
        array is nlag + 1.  Setting nlag when fft is False uses a simple,
        direct estimator of the autocovariances that only computes the first
Loading ...