import numpy as np
from statsmodels.tools.tools import Bunch
llf = np.array([-242.06033399744])
nobs = np.array([202])
k = np.array([4])
k_exog = np.array([1])
sigma = np.array([.80201496146073])
chi2 = np.array([348.43324197088])
df_model = np.array([2])
k_ar = np.array([1])
k_ma = np.array([1])
params = np.array([
.82960638524364,
.93479332833705,
-.75728342544279,
.64322799840686])
cov_params = np.array([
.14317811930738,
-.01646077810033,
.01510986837498,
-.00280799533479,
-.01646077810033,
.00321032468661,
-.00353027620719,
.00097645385252,
.01510986837498,
-.00353027620719,
.00484312817753,
-.00112050648944,
-.00280799533479,
.00097645385252,
-.00112050648944,
.0007715609499]).reshape(4, 4)
xb = np.array([
.82960641384125,
.82960641384125,
.697261095047,
.61113905906677,
.51607495546341,
.47362637519836,
.41342103481293,
.40238001942635,
.37454023957253,
.33222004771233,
.32514902949333,
.31093680858612,
.30019253492355,
.31159669160843,
.29182952642441,
.30349296331406,
.29457464814186,
.28427124023438,
.30664679408073,
.29696446657181,
.31270903348923,
.29268020391464,
.28816330432892,
.29006817936897,
.30216124653816,
.30066826939583,
.31728908419609,
.30679926276207,
.3272570669651,
.37292611598969,
.36668366193771,
.40278288722038,
.36799272894859,
.36827209591866,
.38623574376106,
.39983862638474,
.42789059877396,
.43138384819031,
.46953064203262,
.48066720366478,
.48910140991211,
.53098994493484,
.54496067762375,
.55554050207138,
.58130383491516,
.60081332921982,
.58008605241776,
.58214038610458,
.58369606733322,
.53162068128586,
.54543834924698,
.52040082216263,
.50143963098526,
.48708060383797,
.47620677947998,
.48572361469269,
.51068127155304,
.61833620071411,
.61110657453537,
.76539021730423,
.84672522544861,
.92606955766678,
.96840506792068,
1.0892199277878,
1.1097067594528,
1.0187155008316,
1.0030621290207,
.97345739603043,
.95103752613068,
.82755368947983,
.84054774045944,
.85038793087006,
.84008830785751,
.92104357481003,
.89359468221664,
.87280809879303,
.91032028198242,
.95647835731506,
1.0624366998672,
1.1426770687103,
1.1679404973984,
1.311328291893,
1.473167181015,
1.5602221488953,
1.7326545715332,
1.8809853792191,
1.7803012132645,
1.7750589847565,
1.8420933485031,
1.7863517999649,
1.8328944444656,
1.7793855667114,
1.5791050195694,
1.3564316034317,
1.5250737667084,
1.3155146837234,
1.014811873436,
.98235523700714,
.97552710771561,
.97035628557205,
1.0196926593781,
1.0393049716949,
.98315137624741,
.97613000869751,
.89980864524841,
.96626943349838,
.91009211540222,
.88530200719833,
.97303456068039,
.57794612646103,
.63377332687378,
.65829831361771,
.76562696695328,
.86465454101563,
.90414637327194,
.95180231332779,
.95238989591599,
.98833626508713,
1.0333099365234,
1.0851185321808,
1.1066001653671,
1.2293750047684,
1.233595252037,
1.1480363607407,
1.2962552309036,
1.2842413187027,
1.3106474876404,
1.5614050626755,
1.4672855138779,
1.2362524271011,
1.1855486631393,
1.1294020414352,
1.1046353578568,
1.0858771800995,
1.0716745853424,
1.0786685943604,
1.0662157535553,
1.0390332937241,
.96519494056702,
.9802839756012,
.92070508003235,
.91108840703964,
.95705932378769,
.95637094974518,
.97360169887543,
1.0221517086029,
.9701629281044,
.94854199886322,
.98542231321335,
1.048855304718,
1.0081344842911,
1.0305507183075,
1.0475262403488,
.93612504005432,
.85176283121109,
.89438372850418,
.820152759552,
.71068543195724,
.76979607343674,
.76130604743958,
.77262878417969,
.85220617055893,
.84146595001221,
.93983960151672,
.97883212566376,
1.0793634653091,
1.1909983158112,
1.1690304279327,
1.2411522865295,
1.1360056400299,
1.0918840169907,
.9164656996727,
.76586949825287,
.918093085289,
.87360894680023,
.92867678403854,
1.00588285923,
.92233866453171,
.84132260084152,
.90422683954239,
.9873673915863,
.99707210063934,
1.1109310388565,
1.1971517801285,
1.138188958168,
1.2710473537445,
1.1763968467712,
1.7437561750412,
1.4101150035858,
1.3527159690857,
1.4335050582886,
.99765706062317,
1.1067585945129,
1.3086627721786,
1.2968333959579,
1.3547962903976,
1.6768488883972,
1.5905654430389,
2.0774590969086,
1.3218278884888,
.21813294291496,
.30750840902328,
.60612773895264])
y = np.array([
np.nan,
29.809606552124,
29.847261428833,
29.961139678955,
29.886075973511,
30.013628005981,
29.96342086792,
30.152379989624,
30.214540481567,
30.142219543457,
30.245149612427,
30.290935516357,
30.3401927948,
30.521595001221,
30.511829376221,
30.683492660522,
30.734575271606,
30.764270782471,
30.996646881104,
31.046964645386,
31.252710342407,
31.242681503296,
31.308164596558,
31.410068511963,
31.582162857056,
31.680667877197,
31.897289276123,
31.956798553467,
32.207256317139,
32.652923583984,
32.8166847229,
33.252780914307,
33.267993927002,
33.468269348145,
33.786235809326,
34.099838256836,
34.527889251709,
34.831386566162,
35.369533538818,
35.780666351318,
36.189102172852,
36.830989837646,
37.344959259033,
37.855541229248,
38.481304168701,
39.100814819336,
39.480087280273,
39.9821434021,
40.483695983887,
40.631618499756,
41.145435333252,
41.420402526855,
41.701438903809,
41.987079620361,
42.276206970215,
42.685726165771,
43.210681915283,
44.318336486816,
44.811107635498,
46.365386962891,
47.646724700928,
49.026069641113,
50.268405914307,
52.089218139648,
53.409706115723,
54.018714904785,
55.003063201904,
55.873458862305,
56.751037597656,
56.927551269531,
57.840549468994,
58.750389099121,
59.540088653564,
60.921043395996,
61.693592071533,
62.472805023193,
63.610321044922,
64.856483459473,
66.562438964844,
68.24267578125,
69.667938232422,
71.911323547363,
74.473167419434,
76.760215759277,
79.732650756836,
82.780990600586,
84.380302429199,
86.475059509277,
89.042091369629,
90.886352539063,
93.332893371582,
95.179389953613,
95.979103088379,
Loading ...