import numpy as np
from statsmodels.tools.tools import Bunch
llf = np.array([-243.77512585356])
nobs = np.array([202])
k = np.array([3])
k_exog = np.array([1])
sigma = np.array([.80556855709271])
chi2 = np.array([14938.241729056])
df_model = np.array([2])
k_ar = np.array([1])
k_ma = np.array([1])
params = np.array([
.99034248845249,
-.83659509233745,
.80556855709271])
cov_params = np.array([
.00009906057555,
-.00026616895902,
.00007867120825,
-.00026616895902,
.00137590666911,
-.0001403880509,
.00007867120825,
-.0001403880509,
.0002129852258]).reshape(3, 3)
xb = np.array([
0,
0,
.10457526892424,
.14047028124332,
.10415132343769,
.11891452968121,
.09492295235395,
.11409470438957,
.1086763292551,
.08389142900705,
.08740901201963,
.08212262392044,
.07780049741268,
.09159570932388,
.07793674618006,
.08996207267046,
.08444581180811,
.07675409317017,
.09658851474524,
.09001308679581,
.10454939305782,
.08898131549358,
.08520055562258,
.08665482699871,
.09710033237934,
.09660832583904,
.11157563328743,
.10410477221012,
.12245775014162,
.16395011544228,
.16329728066921,
.19811384379864,
.1734282374382,
.17583830654621,
.19323042035103,
.20777989923954,
.23532645404339,
.24299769103527,
.28016451001167,
.29588291049004,
.30903342366219,
.35078409314156,
.37033796310425,
.38669663667679,
.41575729846954,
.44006872177124,
.42965853214264,
.43632391095161,
.44190016388893,
.40044051408768,
.41188025474548,
.3907016813755,
.37298321723938,
.3581600189209,
.3457590341568,
.35075950622559,
.37031736969948,
.46355310082436,
.46467992663383,
.60399496555328,
.68979620933533,
.77695161104202,
.8344908952713,
.95950168371201,
1.0025858879089,
.94638174772263,
.94548571109772,
.92936158180237,
.91587167978287,
.81233781576157,
.81797075271606,
.8226832151413,
.81125050783157,
.87855970859528,
.85799652338028,
.84079349040985,
.87252616882324,
.9144481420517,
1.0110183954239,
1.0918086767197,
1.1286484003067,
1.2670909166336,
1.4290360212326,
1.533768415451,
1.7136362791061,
1.8794873952866,
1.8337399959564,
1.8569672107697,
1.9378981590271,
1.9133563041687,
1.969698548317,
1.939960360527,
1.7767087221146,
1.5786340236664,
1.7050459384918,
1.5186812877655,
1.2397723197937,
1.1755603551865,
1.1372153759003,
1.1051361560822,
1.1244224309921,
1.1251838207245,
1.06432056427,
1.0441527366638,
.96578127145767,
1.0078399181366,
.95077663660049,
.91841346025467,
.98358678817749,
.63836628198624,
.65705251693726,
.65730959177017,
.73439955711365,
.81426596641541,
.85033398866653,
.89588165283203,
.90323758125305,
.94014054536819,
.98638904094696,
1.040454864502,
1.0703103542328,
1.1875365972519,
1.2087339162827,
1.1495937108994,
1.2846138477325,
1.2899470329285,
1.3251601457596,
1.5544888973236,
1.5003498792648,
1.316685795784,
1.2706536054611,
1.2167699337006,
1.1870667934418,
1.1622149944305,
1.1414264440536,
1.1394081115723,
1.1223464012146,
1.0926969051361,
1.0217674970627,
1.0239287614822,
.96423649787903,
.94504725933075,
.97511827945709,
.96952658891678,
.98022425174713,
1.0199228525162,
.97626084089279,
.95510673522949,
.98353403806686,
1.0380674600601,
1.0068138837814,
1.0267919301987,
1.0435055494308,
.94986528158188,
.87152636051178,
.89823776483536,
.82833498716354,
.72372996807098,
.75921636819839,
.74277937412262,
.74440395832062,
.80726110935211,
.79834908246994,
.88314270973206,
.92332923412323,
1.0184471607208,
1.12877368927,
1.1288229227066,
1.2057402133942,
1.1317123174667,
1.100532412529,
.95145136117935,
.81135284900665,
.92477059364319,
.88128125667572,
.92177194356918,
.98639768362045,
.91746246814728,
.84441828727722,
.89093261957169,
.96059763431549,
.97275197505951,
1.0751719474792,
1.1608537435532,
1.124911904335,
1.2485905885696,
1.1829364299774,
1.6815021038055,
1.4374854564667,
1.4024653434753,
1.4807903766632,
1.1158236265182,
1.1908674240112,
1.3569641113281,
1.3532432317734,
1.4080929756165,
1.6949023008347,
1.6488753557205,
2.0886788368225,
1.4827802181244,
.51556593179703,
.5077338218689,
.70120370388031])
y = np.array([
np.nan,
28.979999542236,
29.25457572937,
29.49047088623,
29.474151611328,
29.65891456604,
29.64492225647,
29.864093780518,
29.948677062988,
29.893890380859,
30.00740814209,
30.062122344971,
30.11780166626,
30.301595687866,
30.29793548584,
30.469961166382,
30.524446487427,
30.556753158569,
30.786588668823,
30.840013504028,
31.044549942017,
31.038982391357,
31.105201721191,
31.206655502319,
31.377101898193,
31.476608276367,
31.691576004028,
31.754104614258,
32.002456665039,
32.443950653076,
32.613296508789,
33.048110961914,
33.073429107666,
33.27583694458,
33.593231201172,
33.907779693604,
34.33532333374,
34.642997741699,
35.180164337158,
35.595882415771,
36.009033203125,
36.650783538818,
37.170337677002,
37.686695098877,
38.315757751465,
38.94006729126,
39.329658508301,
39.836326599121,
40.341899871826,
40.500438690186,
41.011878967285,
41.290702819824,
41.572982788086,
41.85816192627,
42.14575958252,
42.550758361816,
43.070316314697,
44.163555145264,
44.664680480957,
46.203994750977,
47.489795684814,
48.876949310303,
50.134490966797,
51.959503173828,
53.302585601807,
53.946380615234,
54.945484161377,
55.829364776611,
56.715869903564,
56.912334442139,
57.817970275879,
58.722682952881,
59.511249542236,
60.878559112549,
61.657997131348,
62.44079208374,
63.572528839111,
64.814453125,
66.511016845703,
68.19181060791,
69.628646850586,
71.867088317871,
74.429039001465,
76.733764648438,
79.713638305664,
82.779487609863,
84.433738708496,
86.55696105957,
89.137893676758,
91.01335144043,
93.469696044922,
95.339958190918,
96.176712036133,
96.578636169434,
99.205047607422,
99.618682861328,
99.139770507813,
99.975563049316,
100.9372177124,
101.9051361084,
103.22441864014,
Loading ...