import numpy as np
from statsmodels.tools.tools import Bunch
llf = np.array([-245.40783909604])
nobs = np.array([202])
k = np.array([5])
k_exog = np.array([1])
sigma = np.array([.8100467417583])
chi2 = np.array([2153.20304012])
df_model = np.array([3])
k_ar = np.array([1])
k_ma = np.array([2])
params = np.array([
.92817025087557,
-.89593490671979,
1.3025011610587,
.30250063082791,
.8100467417583])
cov_params = np.array([
.00638581549851,
.0001858475428,
2.8222806545671,
.8538806860364,
-1.1429127085819,
.0001858475428,
.00132037832566,
-.14420925344502,
-.04447007102804,
.0576156187095,
2.8222806545671,
-.14420925344502,
40397.568324803,
12222.977216556,
-16359.547340433,
.8538806860364,
-.04447007102804,
12222.977216556,
3698.2722243412,
-4949.8609964351,
-1.1429127085819,
.0576156187095,
-16359.547340433,
-4949.8609964351,
6625.0231409853]).reshape(5, 5)
xb = np.array([
.92817026376724,
.92817026376724,
.69511789083481,
.77192437648773,
.66135895252228,
.77525061368942,
.64687132835388,
.79659670591354,
.65842008590698,
.71215486526489,
.69971066713333,
.72092038393021,
.68201982975006,
.76510280370712,
.64253836870193,
.78239262104034,
.64609551429749,
.74087703227997,
.71774411201477,
.7119727730751,
.73067259788513,
.67785596847534,
.70898467302322,
.71334755420685,
.72984194755554,
.7017787694931,
.75292426347733,
.67507487535477,
.78219056129456,
.78040039539337,
.71250075101852,
.82028061151505,
.63505899906158,
.79452306032181,
.72773635387421,
.79555094242096,
.76685506105423,
.77427339553833,
.82101213932037,
.77917188405991,
.78917801380157,
.86641925573349,
.78457218408585,
.83697980642319,
.83281791210175,
.85224026441574,
.75030690431595,
.8551008105278,
.78025943040848,
.72790426015854,
.84552866220474,
.72061747312546,
.78669738769531,
.73868823051453,
.78071022033691,
.78002023696899,
.83737623691559,
.98988044261932,
.72882527112961,
1.2245427370071,
.85331875085831,
1.1637357473373,
.86477434635162,
1.3248475790024,
.81245219707489,
.98008638620377,
.85591268539429,
1.0162551403046,
.8165408372879,
.78947591781616,
.94166398048401,
.93266606330872,
.85924750566483,
1.1245046854019,
.75576168298721,
1.0030617713928,
.91267073154449,
1.0848042964935,
1.0778224468231,
1.1551086902618,
.97817331552505,
1.4012540578842,
1.2360861301422,
1.3335381746292,
1.4352362155914,
1.4941285848618,
.9415163397789,
1.437669634819,
1.2404690980911,
1.2285294532776,
1.3219480514526,
1.1560415029526,
.83524394035339,
.87116771936417,
1.5561962127686,
.47358739376068,
.78093349933624,
.90549737215042,
1.0217791795731,
.86397403478622,
1.1526786088943,
.87662625312805,
.95803648233414,
.89513635635376,
.85281348228455,
1.0852742195129,
.76808404922485,
.96872144937515,
1.0732915401459,
.02145584858954,
1.3687089681625,
.50049883127213,
1.3895837068558,
.6889950633049,
1.2795144319534,
.7050421833992,
1.2218985557556,
.74481928348541,
1.3074514865875,
.7919961810112,
1.2807723283768,
1.0120536088943,
1.1938916444778,
.68923074007034,
1.6174983978271,
.64740318059921,
1.4949930906296,
1.2678960561752,
1.0586776733398,
.55762887001038,
1.2790743112564,
.66515874862671,
1.2538269758224,
.70554333925247,
1.2391568422318,
.75241559743881,
1.2129040956497,
.69235223531723,
1.0785228013992,
.8043577671051,
1.0037930011749,
.78750842809677,
1.1880930662155,
.74399447441101,
1.1791603565216,
.85870295763016,
1.0032330751419,
.8019300699234,
1.1696527004242,
.92376220226288,
.99186056852341,
.94733852148056,
1.0748032331467,
.64247089624405,
.95419937372208,
.92043441534042,
.8104555606842,
.66252142190933,
1.1178470849991,
.69223344326019,
1.0570795536041,
.90239083766937,
.95320242643356,
1.0541093349457,
1.0082466602325,
1.1376332044601,
1.1841852664948,
.90440809726715,
1.2733660936356,
.66835701465607,
1.1515763998032,
.44600257277489,
.93500959873199,
1.0847823619843,
.83353632688522,
1.0442448854446,
1.077241897583,
.71010553836823,
.89557945728302,
1.0163468122482,
1.094814658165,
.89641278982162,
1.2808450460434,
1.0223702192307,
.96094745397568,
1.309353351593,
.73499941825867,
2.4902238845825,
-.2579345703125,
1.9272556304932,
.53125941753387,
.7708500623703,
1.0312130451202,
1.6360099315643,
.6022145152092,
1.6338716745377,
1.3494771718979,
1.1322995424271,
2.1901025772095,
-.72639065980911,
-.37026473879814,
1.2391144037247,
1.1353877782822])
y = np.array([
np.nan,
29.908170700073,
29.84511756897,
30.121925354004,
30.031360626221,
30.315252304077,
30.196870803833,
30.5465965271,
30.498420715332,
30.52215385437,
30.619710922241,
30.70092010498,
30.722021102905,
30.975101470947,
30.862537384033,
31.162391662598,
31.086095809937,
31.220876693726,
31.407745361328,
31.461973190308,
31.670673370361,
31.627857208252,
31.728984832764,
31.833349227905,
32.009841918945,
32.08177947998,
32.33292388916,
32.325073242188,
32.662189483643,
33.060398101807,
33.162502288818,
33.670280456543,
33.535060882568,
33.894519805908,
34.127738952637,
34.495552062988,
34.866851806641,
35.17427444458,
35.721012115479,
36.079170227051,
36.489177703857,
37.16641998291,
37.584571838379,
38.136978149414,
38.732818603516,
39.352241516113,
39.65030670166,
40.255104064941,
40.68025970459,
40.827903747559,
41.445526123047,
41.620620727539,
41.986698150635,
42.238689422607,
42.580707550049,
42.98002243042,
43.537376403809,
44.689880371094,
44.928825378418,
46.824542999268,
47.653316497803,
49.263732910156,
50.164772033691,
52.324848175049,
53.112449645996,
53.980087280273,
54.855911254883,
55.916255950928,
56.616539001465,
56.889472961426,
57.941665649414,
58.832668304443,
59.55924987793,
61.124504089355,
61.555759429932,
62.603061676025,
63.612670898438,
64.984802246094,
66.577819824219,
68.255104064941,
69.478172302246,
72.001251220703,
74.236083984375,
Loading ...