import numpy as np
from statsmodels.tools.tools import Bunch
llf = np.array([-239.75290561974])
nobs = np.array([202])
k = np.array([4])
k_exog = np.array([1])
sigma = np.array([.79291203639424])
chi2 = np.array([35036.682546665])
df_model = np.array([3])
k_ar = np.array([1])
k_ma = np.array([2])
params = np.array([
.99954097483478,
-.69022779461512,
-.20477682541104,
.62870949745886])
cov_params = np.array([
.00007344276568,
-.00016074342677,
-.00018478942445,
8.040251506e-06,
-.00016074342677,
.00094099304774,
.00017233777676,
-.0000145011098,
-.00018478942445,
.00017233777676,
.00103352686916,
.00030686101903,
8.040251506e-06,
-.0000145011098,
.00030686101903,
.00067796985496]).reshape(4, 4)
xb = np.array([
0,
0,
.05104803293943,
.06663129478693,
.02164618112147,
.0773858949542,
.02606418170035,
.09391833096743,
.05710592120886,
.03083370067179,
.07319989800453,
.05287836492062,
.05776296555996,
.09105986356735,
.04293738678098,
.09576436132193,
.06068528071046,
.06157376244664,
.11172580718994,
.06527806818485,
.11443704366684,
.05653077363968,
.08205550909042,
.08481238037348,
.10436166077852,
.0875685736537,
.12320486456156,
.08366665989161,
.13979130983353,
.1902572363615,
.1306214183569,
.21803694963455,
.11079790443182,
.17274764180183,
.1937662512064,
.20047917962074,
.24034893512726,
.21783453226089,
.29279819130898,
.26804205775261,
.28678458929062,
.35651323199272,
.33659368753433,
.35760068893433,
.39895334839821,
.41131839156151,
.36645981669426,
.40991494059563,
.41024547815323,
.32657703757286,
.42312324047089,
.34933325648308,
.35912537574768,
.35077446699142,
.34701564908028,
.37364318966866,
.40170526504517,
.56070649623871,
.41915491223335,
.73478156328201,
.67748892307281,
.7744625210762,
.77825599908829,
.97586625814438,
.88692498207092,
.76232481002808,
.87376874685287,
.83281141519547,
.84783887863159,
.66423743963242,
.84904235601425,
.81613594293594,
.80033475160599,
.95782464742661,
.80624777078629,
.83626395463943,
.91873735189438,
.95130664110184,
1.0939226150513,
1.1171194314957,
1.1004731655121,
1.3512066602707,
1.4703129529953,
1.4805699586868,
1.7385860681534,
1.8268398046494,
1.5489361286163,
1.7446503639221,
1.864644408226,
1.7200467586517,
1.9223358631134,
1.775306224823,
1.5392524003983,
1.4067870378494,
1.9366238117218,
1.2984343767166,
1.1080636978149,
1.3500427007675,
1.2837564945221,
1.2670782804489,
1.3347851037979,
1.2857422828674,
1.1625040769577,
1.2111755609512,
1.0548515319824,
1.2553508281708,
1.0327949523926,
1.0740388631821,
1.222040772438,
.40555971860886,
1.0233588218689,
.84209614992142,
1.0186324119568,
1.0319027900696,
.99487775564194,
1.0439211130142,
.98785293102264,
1.0620124340057,
1.0916963815689,
1.1378232240677,
1.1243290901184,
1.3305295705795,
1.1925677061081,
1.0872994661331,
1.4599523544312,
1.2333589792252,
1.3584797382355,
1.7595859766006,
1.3009568452835,
1.1157965660095,
1.2948887348175,
1.2063180208206,
1.2332669496536,
1.2132470607758,
1.2049551010132,
1.2260574102402,
1.1875206232071,
1.1547852754593,
1.0519831180573,
1.1594845056534,
1.0069926977158,
1.0675266981125,
1.1299223899841,
1.0620901584625,
1.0999356508255,
1.1535499095917,
1.0026944875717,
1.0428657531738,
1.1120204925537,
1.1684119701385,
1.0258769989014,
1.1342295408249,
1.1183958053589,
.91313683986664,
.91156214475632,
1.0540328025818,
.84359037876129,
.75758427381516,
.96401190757751,
.83226495981216,
.8759680390358,
.98239886760712,
.85917687416077,
1.0634194612503,
.99442666769028,
1.153311252594,
1.2288066148758,
1.0869039297104,
1.281947016716,
1.0067318677902,
1.1028815507889,
.82448446750641,
.78489726781845,
1.1850204467773,
.86753690242767,
1.0692945718765,
1.1030179262161,
.8791960477829,
.86451041698456,
1.0455346107483,
1.085998415947,
1.0172398090363,
1.2250980138779,
1.2316122055054,
1.062157869339,
1.3991860151291,
1.0520887374878,
2.2203133106232,
.88833123445511,
1.4289729595184,
1.5206423997879,
.68520504236221,
1.4659557342529,
1.5350053310394,
1.3178979158401,
1.4888265132904,
1.9698411226273,
1.4406447410583,
2.517040014267,
.55537897348404,
-.20722626149654,
1.0899519920349,
1.164245724678])
y = np.array([
np.nan,
28.979999542236,
29.201047897339,
29.416631698608,
29.391647338867,
29.617385864258,
29.576063156128,
29.84391784668,
29.897106170654,
29.84083366394,
29.993200302124,
30.032876968384,
30.097763061523,
30.3010597229,
30.262937545776,
30.475763320923,
30.500686645508,
30.541572570801,
30.801725387573,
30.815279006958,
31.054437637329,
31.006530761719,
31.102056503296,
31.20481300354,
31.384363174438,
31.467567443848,
31.703205108643,
31.733665466309,
32.019790649414,
32.47025680542,
32.580623626709,
33.068035125732,
33.010799407959,
33.272747039795,
33.593769073486,
33.900478363037,
34.340347290039,
34.617835998535,
35.192798614502,
35.568042755127,
35.986785888672,
36.656513214111,
37.13659286499,
37.657600402832,
38.29895401001,
38.911319732666,
39.266460418701,
39.809917449951,
40.310245513916,
40.426574707031,
41.023120880127,
41.249336242676,
41.559127807617,
41.850772857666,
42.14701461792,
42.573642730713,
43.101707458496,
44.260707855225,
44.619155883789,
46.334781646729,
47.477489471436,
48.874462127686,
50.078254699707,
51.9758644104,
53.186923980713,
53.762325286865,
54.873767852783,
55.732814788818,
56.647838592529,
56.764236450195,
57.849040985107,
58.716136932373,
59.500335693359,
60.957824707031,
61.606246948242,
62.436264038086,
63.61873626709,
64.85131072998,
66.593925476074,
68.21711730957,
69.600471496582,
71.951202392578,
74.470314025879,
76.680564880371,
79.738586425781,
82.726844787598,
84.148933410645,
86.444648742676,
89.064643859863,
90.820045471191,
93.422332763672,
95.175308227539,
95.939254760742,
Loading ...