import numpy as np
from statsmodels.tools.tools import Bunch
llf = np.array([-240.79351748413])
nobs = np.array([202])
k = np.array([4])
k_exog = np.array([1])
sigma = np.array([.79349479007541])
chi2 = np.array([31643.977146904])
df_model = np.array([3])
k_ar = np.array([1])
k_ma = np.array([2])
params = np.array([
.99502750401315,
-.68630179255403,
-.19840894739396,
.79349479007541])
cov_params = np.array([
.00010016992219,
-.00021444523598,
-.00023305572854,
-6.768123591e-06,
-.00021444523598,
.00104186449549,
.00023669747281,
3.902897504e-06,
-.00023305572854,
.00023669747281,
.0010810935718,
.00020764808165,
-6.768123591e-06,
3.902897504e-06,
.00020764808165,
.0002668504612]).reshape(4, 4)
xb = np.array([
0,
0,
.11361486464739,
.14230862259865,
.07256115227938,
.13274206221104,
.06747215241194,
.13822889328003,
.09585004299879,
.06099047139287,
.10120190680027,
.07761032879353,
.07942545413971,
.11177492141724,
.06088993698359,
.11208334565163,
.0755797252059,
.07422959059477,
.12350624799728,
.07623053342104,
.12391770631075,
.06531815230846,
.08897981792688,
.09103457629681,
.10980048775673,
.09255626052618,
.12732291221619,
.08764986693859,
.14262486994267,
.19330270588398,
.13410428166389,
.2202503234148,
.1138079687953,
.17364008724689,
.19471970200539,
.20120698213577,
.24072274565697,
.21839858591557,
.29251739382744,
.26838713884354,
.28637075424194,
.3556769490242,
.33624804019928,
.35650280117989,
.3974232673645,
.40968126058578,
.36446389555931,
.40641778707504,
.40639826655388,
.32208651304245,
.41636437177658,
.34307014942169,
.3511538207531,
.34216031432152,
.33759200572968,
.36354607343674,
.39148297905922,
.55032896995544,
.4113195836544,
.7244918346405,
.67152947187424,
.76787060499191,
.77276849746704,
.96944856643677,
.88270664215088,
.7563271522522,
.86404490470886,
.82250237464905,
.83520317077637,
.65044301748276,
.83044308423996,
.79827356338501,
.78103590011597,
.93702721595764,
.78709679841995,
.81435388326645,
.89593154191971,
.92867535352707,
1.0709822177887,
1.0957812070847,
1.0792914628983,
1.3286831378937,
1.4503024816513,
1.4619816541672,
1.7190475463867,
1.8096150159836,
1.5324629545212,
1.721804857254,
1.8408879041672,
1.6955831050873,
1.8928952217102,
1.7459137439728,
1.5055395364761,
1.3664853572845,
1.8893030881882,
1.256967663765,
1.0567245483398,
1.2921603918076,
1.2266329526901,
1.2085332870483,
1.275726556778,
1.2278587818146,
1.1046848297119,
1.1517647504807,
.99646359682083,
1.194694519043,
.97580307722092,
1.0148292779922,
1.1635760068893,
.35167038440704,
.95728904008865,
.78414303064346,
.95968008041382,
.97746151685715,
.94291216135025,
.99327826499939,
.93940645456314,
1.013852596283,
1.0454497337341,
1.0929356813431,
1.0810794830322,
1.2874436378479,
1.1533098220825,
1.0470397472382,
1.4171674251556,
1.1959022283554,
1.3181202411652,
1.7197531461716,
1.2677561044693,
1.0768386125565,
1.2508004903793,
1.1625586748123,
1.1872273683548,
1.1668027639389,
1.1576874256134,
1.1782459020615,
1.1398378610611,
1.1065219640732,
1.0032601356506,
1.1087976694107,
.95788156986237,
1.0163568258286,
1.079482793808,
1.0131409168243,
1.0506906509399,
1.1052004098892,
.95601671934128,
.99452114105225,
1.0641269683838,
1.1217628717422,
.98107707500458,
1.0877858400345,
1.0735836029053,
.86890149116516,
.86449563503265,
1.0060983896255,
.79812264442444,
.70991164445877,
.91461282968521,
.78625136613846,
.8291689157486,
.93680161237717,
.81633454561234,
1.0196126699448,
.95442569255829,
1.1131925582886,
1.1916073560715,
1.05200278759,
1.2451642751694,
.97296446561813,
1.0647999048233,
.78715896606445,
.74267995357513,
1.1400059461594,
.82839399576187,
1.0262999534607,
1.0628409385681,
.84051495790482,
.82304340600967,
1.0028872489929,
1.0457111597061,
.97847640514374,
1.1855980157852,
1.195351600647,
1.0270363092422,
1.3610677719116,
1.0189098119736,
2.1800265312195,
.86722087860107,
1.3893752098083,
1.4851142168045,
.65110164880753,
1.417050242424,
1.4938380718231,
1.2786860466003,
1.446773648262,
1.9284181594849,
1.4071846008301,
2.4745123386383,
.53088372945786,
-.25887301564217,
1.0166070461273,
1.1028108596802])
y = np.array([
np.nan,
28.979999542236,
29.263614654541,
29.492309570313,
29.442562103271,
29.672742843628,
29.617471694946,
29.888229370117,
29.935850143433,
29.870990753174,
30.021202087402,
30.057609558105,
30.119426727295,
30.321773529053,
30.280889511108,
30.492082595825,
30.515581130981,
30.554229736328,
30.813507080078,
30.826231002808,
31.063919067383,
31.015319824219,
31.108980178833,
31.21103477478,
31.389801025391,
31.472555160522,
31.707323074341,
31.737649917603,
32.022624969482,
32.473300933838,
32.584106445313,
33.070247650146,
33.013809204102,
33.273639678955,
33.594722747803,
33.901206970215,
34.340721130371,
34.61840057373,
35.192520141602,
35.568386077881,
35.98637008667,
36.65567779541,
37.136245727539,
37.65650177002,
38.297424316406,
38.909679412842,
39.264465332031,
39.806419372559,
40.306400299072,
40.42208480835,
41.016361236572,
41.243072509766,
41.551155090332,
41.84215927124,
42.137592315674,
42.563545227051,
43.091484069824,
44.250328063965,
44.611320495605,
46.324489593506,
47.471527099609,
48.867870330811,
50.072769165039,
51.9694480896,
53.182704925537,
53.756328582764,
54.864044189453,
55.722503662109,
56.635204315186,
56.750442504883,
57.830444335938,
58.698276519775,
59.481037139893,
60.937026977539,
61.587097167969,
62.414352416992,
63.595932006836,
64.828674316406,
66.570983886719,
68.195777893066,
69.579292297363,
71.928680419922,
74.450302124023,
76.661979675293,
79.719047546387,
82.709617614746,
84.132461547852,
86.421798706055,
89.040885925293,
90.79557800293,
93.39289855957,
95.14591217041,
95.905540466309,
Loading ...