import numpy as np
from statsmodels.tools.tools import Bunch
llf = np.array([-240.29558272688])
nobs = np.array([202])
k = np.array([5])
k_exog = np.array([1])
sigma = np.array([.79494581155191])
chi2 = np.array([1213.6019521322])
df_model = np.array([3])
k_ar = np.array([2])
k_ma = np.array([1])
params = np.array([
.72428568600554,
1.1464248419014,
-.17024528879204,
-.87113675466923,
.63193884330392])
cov_params = np.array([
.31218565961764,
-.01618380799341,
.00226345462929,
.01386291798401,
-.0036338799176,
-.01618380799341,
.00705713030623,
-.00395404914463,
-.00685704952799,
-.00018629958479,
.00226345462929,
-.00395404914463,
.00255884492061,
.00363586332269,
.00039879711931,
.01386291798401,
-.00685704952799,
.00363586332269,
.00751765532203,
.00008982556101,
-.0036338799176,
-.00018629958479,
.00039879711931,
.00008982556101,
.00077550533053]).reshape(5, 5)
xb = np.array([
.72428566217422,
.72428566217422,
.56208884716034,
.53160965442657,
.45030161738396,
.45229381322861,
.38432359695435,
.40517011284828,
.36063131690025,
.30754271149635,
.32044330239296,
.29408219456673,
.27966624498367,
.29743707180023,
.25011941790581,
.27747189998627,
.24822402000427,
.23426930606365,
.27233305573463,
.23524768650532,
.26427435874939,
.21787133812904,
.22461311519146,
.22853142023087,
.24335558712482,
.22953669726849,
.25524401664734,
.22482520341873,
.26450532674789,
.31863233447075,
.27352628111839,
.33670437335968,
.25623551011086,
.28701293468475,
.315819054842,
.3238864839077,
.35844340920448,
.34399557113647,
.40348997712135,
.39373970031738,
.4022718667984,
.46476069092751,
.45762005448341,
.46842387318611,
.50536489486694,
.52051961421967,
.47866532206535,
.50378143787384,
.50863671302795,
.4302790760994,
.49568024277687,
.44652271270752,
.43774726986885,
.43010330200195,
.42344436049461,
.44517293572426,
.47460499405861,
.62086409330368,
.52550911903381,
.77532315254211,
.78466820716858,
.85438597202301,
.87056696414948,
1.0393311977386,
.99110960960388,
.85202795267105,
.91560190916061,
.89238166809082,
.88917690515518,
.72121334075928,
.84221452474594,
.8454754948616,
.82078683376312,
.95394861698151,
.84718400239944,
.839300096035,
.91501939296722,
.95743554830551,
1.0874761343002,
1.1326615810394,
1.1169674396515,
1.3300451040268,
1.4790810346603,
1.5027786493301,
1.7226468324661,
1.8395622968674,
1.5940405130386,
1.694568157196,
1.8241587877274,
1.7037791013718,
1.838702917099,
1.7334734201431,
1.4791669845581,
1.3007366657257,
1.7364456653595,
1.2694935798645,
.96595168113708,
1.1405370235443,
1.1328836679459,
1.1091921329498,
1.171138882637,
1.1465038061142,
1.0319484472275,
1.055313706398,
.93150246143341,
1.0844472646713,
.93333613872528,
.93137633800507,
1.0778160095215,
.38748729228973,
.77933365106583,
.75266307592392,
.88410103321075,
.94100385904312,
.91849637031555,
.96046274900436,
.92494148015976,
.98310285806656,
1.0272513628006,
1.0762135982513,
1.0743116140366,
1.254854798317,
1.1723403930664,
1.0479376316071,
1.3550333976746,
1.2255589962006,
1.2870025634766,
1.6643482446671,
1.3312928676605,
1.0657893419266,
1.1804157495499,
1.1335761547089,
1.137326002121,
1.1235628128052,
1.1115798950195,
1.1286649703979,
1.0989991426468,
1.0626485347748,
.96542054414749,
1.0419135093689,
.93033194541931,
.95628559589386,
1.027433514595,
.98328214883804,
1.0063992738724,
1.0645687580109,
.94354963302612,
.95077443122864,
1.0226324796677,
1.089217543602,
.97552293539047,
1.0441918373108,
1.052937746048,
.86785578727722,
.82579529285431,
.95432937145233,
.79897737503052,
.68320548534393,
.85365778207779,
.78336101770401,
.80072748661041,
.9089440703392,
.82500487565994,
.98515397310257,
.96745657920837,
1.0962044000626,
1.195325255394,
1.0824474096298,
1.2239117622375,
1.0142554044724,
1.0399018526077,
.80796521902084,
.7145761847496,
1.0631860494614,
.86374056339264,
.98086261749268,
1.0528303384781,
.86123734712601,
.80300676822662,
.96200370788574,
1.0364016294479,
.98456978797913,
1.1556725502014,
1.2025715112686,
1.0507286787033,
1.312912106514,
1.0682457685471,
2.0334177017212,
1.0775905847549,
1.2798084020615,
1.461397767067,
.72960823774338,
1.2498733997345,
1.466894865036,
1.286082983017,
1.3903408050537,
1.8483582735062,
1.4685434103012,
2.3107523918152,
.7711226940155,
-.31598940491676,
.68151205778122,
1.0212944746017])
y = np.array([
np.nan,
29.704284667969,
29.712087631226,
29.881610870361,
29.820302963257,
29.992294311523,
29.934322357178,
30.155170440674,
30.200632095337,
30.117542266846,
30.24044418335,
30.274082183838,
30.319667816162,
30.507436752319,
30.470119476318,
30.657470703125,
30.68822479248,
30.714269638062,
30.962333679199,
30.985248565674,
31.204275131226,
31.16787147522,
31.244613647461,
31.348531723022,
31.523355484009,
31.609535217285,
31.835243225098,
31.874824523926,
32.144504547119,
32.5986328125,
32.723526000977,
33.186702728271,
33.156238555908,
33.387012481689,
33.7158203125,
34.023887634277,
34.458442687988,
34.743995666504,
35.303489685059,
35.693740844727,
36.102272033691,
36.764759063721,
37.257617950439,
37.768424987793,
38.405364990234,
39.020519256592,
39.378665924072,
39.903781890869,
40.408638000488,
40.530277252197,
41.095680236816,
41.346523284912,
41.637748718262,
41.930103302002,
42.223442077637,
42.645172119141,
43.174606323242,
44.320865631104,
44.725509643555,
46.37532043457,
47.584667205811,
48.954383850098,
50.170566558838,
52.039329528809,
53.291107177734,
53.852027893066,
54.915603637695,
55.792385101318,
56.6891746521,
56.821212768555,
57.842212677002,
58.745475769043,
59.5207862854,
60.953948974609,
61.6471824646,
62.439296722412,
63.615020751953,
64.857437133789,
66.587478637695,
68.23265838623,
69.616966247559,
71.930046081543,
74.479080200195,
Loading ...