import numpy as np
from statsmodels.tools.tools import Bunch
llf = np.array([-241.25977940638])
nobs = np.array([202])
k = np.array([4])
k_exog = np.array([1])
sigma = np.array([.79533686587485])
chi2 = np.array([48655.961417345])
df_model = np.array([3])
k_ar = np.array([2])
k_ma = np.array([1])
params = np.array([
1.1870704073154,
-.19095698898571,
-.90853757573555,
.79533686587485])
cov_params = np.array([
.00204336743511,
-.00177522179187,
-.00165894353702,
-.00031352141782,
-.00177522179187,
.00157376214003,
.00132907629148,
.00030367391511,
-.00165894353702,
.00132907629148,
.00210988984438,
.00024199988464,
-.00031352141782,
.00030367391511,
.00024199988464,
.00027937875185]).reshape(4, 4)
xb = np.array([
0,
0,
.11248598247766,
.14283391833305,
.0800810828805,
.12544548511505,
.07541109621525,
.1297073662281,
.10287435352802,
.06303016841412,
.09501431882381,
.08120259642601,
.07862555980682,
.10874316096306,
.06787430495024,
.10527064651251,
.08142036944628,
.07337106764317,
.11828763782978,
.08380854874849,
.11801292747259,
.07338324189186,
.0842502862215,
.09106454998255,
.10832596570253,
.09570593386889,
.1236881390214,
.09362822026014,
.13587079942226,
.19111332297325,
.14459040760994,
.21043147146702,
.12866979837418,
.16308072209358,
.19356986880302,
.20215991139412,
.23782986402512,
.22326464951038,
.28485587239265,
.27474755048752,
.28465977311134,
.34938132762909,
.3421268761158,
.35463020205498,
.39384591579437,
.41037485003471,
.36968034505844,
.39875456690788,
.40607318282127,
.32915702462196,
.40012913942337,
.35161358118057,
.34572568535805,
.34037715196609,
.3355179131031,
.35895752906799,
.38901025056839,
.53648668527603,
.43572762608528,
.69034379720688,
.69410443305969,
.76356476545334,
.77972346544266,
.95276647806168,
.9030898809433,
.76722019910812,
.84191131591797,
.82463103532791,
.82802563905716,
.66399103403091,
.79665386676788,
.80260843038559,
.78016436100006,
.91813576221466,
.80874294042587,
.80483394861221,
.8848432302475,
.92809981107712,
1.0597171783447,
1.1029140949249,
1.0864543914795,
1.3046631813049,
1.4528053998947,
1.4744025468826,
1.6993381977081,
1.816978096962,
1.5705223083496,
1.6871707439423,
1.8281806707382,
1.7127912044525,
1.8617957830429,
1.7624272108078,
1.5169456005096,
1.3543643951416,
1.8122490644455,
1.3362231254578,
1.0437293052673,
1.2371381521225,
1.2306576967239,
1.2056746482849,
1.2665351629257,
1.2366921901703,
1.1172571182251,
1.1408381462097,
1.0126565694809,
1.1675561666489,
1.0074961185455,
1.0045058727264,
1.1498116254807,
.44306626915932,
.85451871156693,
.81856834888458,
.94427144527435,
.99084824323654,
.95836746692657,
.994897544384,
.95328682661057,
1.0093784332275,
1.0500040054321,
1.0956697463989,
1.090208530426,
1.2714649438858,
1.1823015213013,
1.0575052499771,
1.373840212822,
1.2371203899384,
1.3022859096527,
1.6853868961334,
1.3395566940308,
1.0802086591721,
1.2114092111588,
1.1690926551819,
1.1775953769684,
1.1662193536758,
1.1558910608292,
1.1743551492691,
1.1441857814789,
1.1080147027969,
1.0106881856918,
1.0909667015076,
.97610247135162,
1.0038343667984,
1.0743995904922,
1.0255174636841,
1.0471519231796,
1.1034165620804,
.97707790136337,
.9856236577034,
1.0578545331955,
1.1219012737274,
1.0026258230209,
1.0733016729355,
1.0802255868912,
.89154416322708,
.85378932952881,
.98660898208618,
.82558387517929,
.71030122041702,
.88567733764648,
.80868631601334,
.82387971878052,
.92999804019928,
.83861750364304,
.99909782409668,
.97461491823196,
1.1019765138626,
1.1970175504684,
1.0780508518219,
1.2238110303879,
1.0100719928741,
1.0434579849243,
.81277370452881,
.72809249162674,
1.0880596637726,
.87798285484314,
.99824965000153,
1.0677480697632,
.86986482143402,
.81499886512756,
.97921711206436,
1.0504562854767,
.99342101812363,
1.1660186052322,
1.208247423172,
1.0516448020935,
1.3215674161911,
1.0694575309753,
2.0531799793243,
1.0617904663086,
1.2885792255402,
1.4795436859131,
.73947989940643,
1.290878534317,
1.506583571434,
1.3157633543015,
1.424609541893,
1.8879710435867,
1.4916514158249,
2.3532779216766,
.77780252695084,
-.27798706293106,
.7862361073494,
1.1202166080475])
y = np.array([
np.nan,
28.979999542236,
29.26248550415,
29.492834091187,
29.450082778931,
29.665447235107,
29.625410079956,
29.879707336426,
29.942874908447,
29.873029708862,
30.015014648438,
30.06120300293,
30.118625640869,
30.318742752075,
30.287874221802,
30.485269546509,
30.521421432495,
30.553371429443,
30.808288574219,
30.833808898926,
31.058013916016,
31.023384094238,
31.104249954224,
31.211065292358,
31.388326644897,
31.475704193115,
31.703687667847,
31.743627548218,
32.015869140625,
32.471111297607,
32.594593048096,
33.060428619385,
33.028671264648,
33.263080596924,
33.593570709229,
33.902160644531,
34.337829589844,
34.623264312744,
35.184856414795,
35.574745178223,
35.984661102295,
36.649379730225,
37.142127990723,
37.654628753662,
38.293846130371,
38.910373687744,
39.269680023193,
39.798755645752,
40.306076049805,
40.42915725708,
41.00012588501,
41.251613616943,
41.545726776123,
41.840377807617,
42.135517120361,
42.558959960938,
43.089012145996,
44.236488342285,
44.635726928711,
46.290340423584,
47.494102478027,
48.863563537598,
50.079723358154,
51.952766418457,
53.203090667725,
53.767219543457,
54.841911315918,
55.724632263184,
56.628025054932,
56.763988494873,
57.796653747559,
58.702610015869,
59.480163574219,
60.91813659668,
61.608741760254,
62.404830932617,
63.584842681885,
64.828102111816,
66.559715270996,
68.202911376953,
69.586456298828,
71.904663085938,
74.45280456543,
76.67440032959,
79.699340820313,
82.716979980469,
84.170516967773,
86.387168884277,
89.028175354004,
90.812789916992,
93.361793518066,
95.16242980957,
95.916946411133,
Loading ...