Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

alkaline-ml / statsmodels   python

Repository URL to install this package:

Version: 0.11.1 

/ tsa / tsatools.py

from statsmodels.compat.python import lrange, lzip
from statsmodels.compat.numpy import recarray_select

import numpy as np
import numpy.lib.recfunctions as nprf
import pandas as pd
from pandas import DataFrame
from pandas.tseries import offsets
from pandas.tseries.frequencies import to_offset

from statsmodels.tools.validation import int_like, bool_like, string_like
from statsmodels.tools.sm_exceptions import ValueWarning
from statsmodels.tools.data import _is_using_pandas, _is_recarray
from statsmodels.tools.validation import array_like


def add_trend(x, trend="c", prepend=False, has_constant='skip'):
    """
    Add a trend and/or constant to an array.

    Parameters
    ----------
    x : array_like
        Original array of data.
    trend : str {'n', 'c', 't', 'ct', 'ctt'}
        The trend to add.

        * 'n' add no trend.
        * 'c' add constant only.
        * 't' add trend only.
        * 'ct' add constant and linear trend.
        * 'ctt' add constant and linear and quadratic trend.
    prepend : bool
        If True, prepends the new data to the columns of X.
    has_constant : str {'raise', 'add', 'skip'}
        Controls what happens when trend is 'c' and a constant column already
        exists in x. 'raise' will raise an error. 'add' will add a column of
        1s. 'skip' will return the data without change. 'skip' is the default.

    Returns
    -------
    array_like
        The original data with the additional trend columns.  If x is a
        recarray or pandas Series or DataFrame, then the trend column names
        are 'const', 'trend' and 'trend_squared'.

    See Also
    --------
    statsmodels.tools.tools.add_constant
        Add a constant column to an array.

    Notes
    -----
    Returns columns as ['ctt','ct','c'] whenever applicable. There is currently
    no checking for an existing trend.
    """
    prepend = bool_like(prepend, 'prepend')
    trend = string_like(trend, 'trend', options=('n', 'c', 't', 'ct', 'ctt'))
    has_constant = string_like(has_constant, 'has_constant',
                               options=('raise', 'add', 'skip'))

    # TODO: could be generalized for trend of aribitrary order
    columns = ['const', 'trend', 'trend_squared']
    if trend == 'n':
        return x.copy()
    elif trend == "c":  # handles structured arrays
        columns = columns[:1]
        trendorder = 0
    elif trend == "ct" or trend == "t":
        columns = columns[:2]
        if trend == "t":
            columns = columns[1:2]
        trendorder = 1
    elif trend == "ctt":
        trendorder = 2

    is_recarray = _is_recarray(x)
    is_pandas = _is_using_pandas(x, None) or is_recarray
    if is_pandas or is_recarray:
        if is_recarray:
            # deprecated: remove recarray support after 0.12
            import warnings
            from statsmodels.tools.sm_exceptions import recarray_warning
            warnings.warn(recarray_warning, FutureWarning)

            descr = x.dtype.descr
            x = pd.DataFrame.from_records(x)
        elif isinstance(x, pd.Series):
            x = pd.DataFrame(x)
        else:
            x = x.copy()
    else:
        x = np.asanyarray(x)

    nobs = len(x)
    trendarr = np.vander(np.arange(1, nobs + 1, dtype=np.float64), trendorder + 1)
    # put in order ctt
    trendarr = np.fliplr(trendarr)
    if trend == "t":
        trendarr = trendarr[:, 1]

    if "c" in trend:
        if is_pandas or is_recarray:
            # Mixed type protection
            def safe_is_const(s):
                try:
                    return np.ptp(s) == 0.0 and np.any(s != 0.0)
                except:
                    return False
            col_const = x.apply(safe_is_const, 0)
        else:
            ptp0 = np.ptp(np.asanyarray(x), axis=0)
            col_is_const = ptp0 == 0
            nz_const = col_is_const & (x[0] != 0)
            col_const = nz_const

        if np.any(col_const):
            if has_constant == 'raise':
                msg = "x contains a constant. Adding a constant with " \
                      "trend='{0}' is not allowed.".format(trend)
                raise ValueError(msg)
            elif has_constant == 'skip':
                columns = columns[1:]
                trendarr = trendarr[:, 1:]

    order = 1 if prepend else -1
    if is_recarray or is_pandas:
        trendarr = pd.DataFrame(trendarr, index=x.index, columns=columns)
        x = [trendarr, x]
        x = pd.concat(x[::order], 1)
    else:
        x = [trendarr, x]
        x = np.column_stack(x[::order])

    if is_recarray:
        x = x.to_records(index=False)
        new_descr = x.dtype.descr
        extra_col = len(new_descr) - len(descr)
        if prepend:
            descr = new_descr[:extra_col] + descr
        else:
            descr = descr + new_descr[-extra_col:]

        x = x.astype(np.dtype(descr))

    return x


def add_lag(x, col=None, lags=1, drop=False, insert=True):
    """
    Returns an array with lags included given an array.

    Parameters
    ----------
    x : array_like
        An array or NumPy ndarray subclass. Can be either a 1d or 2d array with
        observations in columns.
    col : 'string', int, or None
        If data is a structured array or a recarray, `col` can be a string
        that is the name of the column containing the variable. Or `col` can
        be an int of the zero-based column index. If it's a 1d array `col`
        can be None.
    lags : int
        The number of lags desired.
    drop : bool
        Whether to keep the contemporaneous variable for the data.
    insert : bool or int
        If True, inserts the lagged values after `col`. If False, appends
        the data. If int inserts the lags at int.

    Returns
    -------
    array : ndarray
        Array with lags

    Examples
    --------

    >>> import statsmodels.api as sm
    >>> data = sm.datasets.macrodata.load(as_pandas=False)
    >>> data = data.data[['year','quarter','realgdp','cpi']]
    >>> data = sm.tsa.add_lag(data, 'realgdp', lags=2)

    Notes
    -----
    Trims the array both forward and backward, so that the array returned
    so that the length of the returned array is len(`X`) - lags. The lags are
    returned in increasing order, ie., t-1,t-2,...,t-lags
    """
    lags = int_like(lags, 'lags')
    drop = bool_like(drop, 'drop')

    if x.dtype.names:
        names = x.dtype.names
        if not col and np.squeeze(x).ndim > 1:
            raise IndexError("col is None and the input array is not 1d")
        elif len(names) == 1:
            col = names[0]
        if isinstance(col, int):
            col = x.dtype.names[col]

        contemp = x[col]

        # make names for lags
        tmp_names = [col + '_'+'L(%i)' % i for i in range(1, lags+1)]
        ndlags = lagmat(contemp, maxlag=lags, trim='Both')

        # get index for return
        if insert is True:
            ins_idx = list(names).index(col) + 1
        elif insert is False:
            ins_idx = len(names) + 1
        else: # insert is an int
            if insert > len(names):
                import warnings
                warnings.warn("insert > number of variables, inserting at the"
                              " last position", ValueWarning)
            ins_idx = insert

        first_names = list(names[:ins_idx])
        last_names = list(names[ins_idx:])

        if drop:
            if col in first_names:
                first_names.pop(first_names.index(col))
            else:
                last_names.pop(last_names.index(col))

        if first_names: # only do this if x is not "empty"
            # Workaround to avoid NumPy FutureWarning
            _x = recarray_select(x, first_names)
            first_arr = nprf.append_fields(_x[lags:], tmp_names, ndlags.T,
                                           usemask=False)

        else:
            first_arr = np.zeros(len(x)-lags, dtype=lzip(tmp_names,
                (x[col].dtype,)*lags))
            for i,name in enumerate(tmp_names):
                first_arr[name] = ndlags[:,i]
        if last_names:
            return nprf.append_fields(first_arr, last_names,
                    [x[name][lags:] for name in last_names], usemask=False)
        else: # lags for last variable
            return first_arr

    else: # we have an ndarray

        if x.ndim == 1: # make 2d if 1d
            x = x[:,None]
        if col is None:
            col = 0

        # handle negative index
        if col < 0:
            col = x.shape[1] + col

        contemp = x[:,col]

        if insert is True:
            ins_idx = col + 1
        elif insert is False:
            ins_idx = x.shape[1]
        else:
            if insert < 0: # handle negative index
                insert = x.shape[1] + insert + 1
            if insert > x.shape[1]:
                insert = x.shape[1]
                import warnings
                warnings.warn("insert > number of variables, inserting at the"
                              " last position", ValueWarning)
            ins_idx = insert

        ndlags = lagmat(contemp, lags, trim='Both')
        first_cols = lrange(ins_idx)
        last_cols = lrange(ins_idx,x.shape[1])
        if drop:
            if col in first_cols:
                first_cols.pop(first_cols.index(col))
            else:
                last_cols.pop(last_cols.index(col))
        return np.column_stack((x[lags:,first_cols],ndlags,
                    x[lags:,last_cols]))


def detrend(x, order=1, axis=0):
    """
    Detrend an array with a trend of given order along axis 0 or 1.

    Parameters
    ----------
    x : array_like, 1d or 2d
        Data, if 2d, then each row or column is independently detrended with
        the same trendorder, but independent trend estimates.
    order : int
        The polynomial order of the trend, zero is constant, one is
        linear trend, two is quadratic trend.
    axis : int
        Axis can be either 0, observations by rows, or 1, observations by
        columns.

    Returns
    -------
    ndarray
        The detrended series is the residual of the linear regression of the
        data on the trend of given order.
    """
    order = int_like(order, 'order')
    axis = int_like(axis, 'axis')

    if x.ndim == 2 and int(axis) == 1:
        x = x.T
    elif x.ndim > 2:
        raise NotImplementedError('x.ndim > 2 is not implemented until it is needed')

    nobs = x.shape[0]
    if order == 0:
        # Special case demean
        resid = x - x.mean(axis=0)
    else:
        trends = np.vander(np.arange(float(nobs)), N=order + 1)
        beta = np.linalg.pinv(trends).dot(x)
        resid = x - np.dot(trends, beta)

    if x.ndim == 2 and int(axis) == 1:
        resid = resid.T

    return resid


def lagmat(x, maxlag, trim='forward', original='ex', use_pandas=False):
    """
    Create 2d array of lags.

    Parameters
    ----------
    x : array_like
        Data; if 2d, observation in rows and variables in columns.
    maxlag : int
        All lags from zero to maxlag are included.
    trim : {'forward', 'backward', 'both', 'none', None}
        The trimming method to use.

        * 'forward' : trim invalid observations in front.
        * 'backward' : trim invalid initial observations.
        * 'both' : trim invalid observations on both sides.
Loading ...