# ===================================================================
#
# Copyright (c) 2015, Legrandin <helderijs@gmail.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================
import unittest
from binascii import unhexlify
from Crypto.SelfTest.st_common import list_test_cases
from Crypto.Util.py3compat import tobytes
from Crypto.Cipher import AES, DES3, DES
from Crypto.Hash import SHAKE128
def get_tag_random(tag, length):
return SHAKE128.new(data=tobytes(tag)).read(length)
from Crypto.SelfTest.Cipher.test_CBC import BlockChainingTests
class OpenPGPTests(BlockChainingTests):
aes_mode = AES.MODE_OPENPGP
des3_mode = DES3.MODE_OPENPGP
# Redefine test_unaligned_data_128/64
key_128 = get_tag_random("key_128", 16)
key_192 = get_tag_random("key_192", 24)
iv_128 = get_tag_random("iv_128", 16)
iv_64 = get_tag_random("iv_64", 8)
data_128 = get_tag_random("data_128", 16)
def test_loopback_128(self):
cipher = AES.new(self.key_128, AES.MODE_OPENPGP, self.iv_128)
pt = get_tag_random("plaintext", 16 * 100)
ct = cipher.encrypt(pt)
eiv, ct = ct[:18], ct[18:]
cipher = AES.new(self.key_128, AES.MODE_OPENPGP, eiv)
pt2 = cipher.decrypt(ct)
self.assertEqual(pt, pt2)
def test_loopback_64(self):
cipher = DES3.new(self.key_192, DES3.MODE_OPENPGP, self.iv_64)
pt = get_tag_random("plaintext", 8 * 100)
ct = cipher.encrypt(pt)
eiv, ct = ct[:10], ct[10:]
cipher = DES3.new(self.key_192, DES3.MODE_OPENPGP, eiv)
pt2 = cipher.decrypt(ct)
self.assertEqual(pt, pt2)
def test_IV_iv_attributes(self):
cipher = AES.new(self.key_128, AES.MODE_OPENPGP, self.iv_128)
eiv = cipher.encrypt(b"")
self.assertEqual(cipher.iv, self.iv_128)
cipher = AES.new(self.key_128, AES.MODE_OPENPGP, eiv)
self.assertEqual(cipher.iv, self.iv_128)
def test_null_encryption_decryption(self):
cipher = AES.new(self.key_128, AES.MODE_OPENPGP, self.iv_128)
eiv = cipher.encrypt(b"")
cipher = AES.new(self.key_128, AES.MODE_OPENPGP, eiv)
self.assertEqual(cipher.decrypt(b""), b"")
def test_either_encrypt_or_decrypt(self):
cipher = AES.new(self.key_128, AES.MODE_OPENPGP, self.iv_128)
eiv = cipher.encrypt(b"")
self.assertRaises(TypeError, cipher.decrypt, b"")
cipher = AES.new(self.key_128, AES.MODE_OPENPGP, eiv)
cipher.decrypt(b"")
self.assertRaises(TypeError, cipher.encrypt, b"")
def test_unaligned_data_128(self):
plaintexts = [ b"7777777" ] * 100
cipher = AES.new(self.key_128, AES.MODE_OPENPGP, self.iv_128)
ciphertexts = [ cipher.encrypt(x) for x in plaintexts ]
cipher = AES.new(self.key_128, AES.MODE_OPENPGP, self.iv_128)
self.assertEqual(b"".join(ciphertexts), cipher.encrypt(b"".join(plaintexts)))
def test_unaligned_data_64(self):
plaintexts = [ b"7777777" ] * 100
cipher = DES3.new(self.key_192, DES3.MODE_OPENPGP, self.iv_64)
ciphertexts = [ cipher.encrypt(x) for x in plaintexts ]
cipher = DES3.new(self.key_192, DES3.MODE_OPENPGP, self.iv_64)
self.assertEqual(b"".join(ciphertexts), cipher.encrypt(b"".join(plaintexts)))
def test_output_param(self):
pass
def test_output_param_memoryview(self):
pass
def test_output_param_neg(self):
pass
class TestVectors(unittest.TestCase):
def test_aes(self):
# The following test vectors have been generated with gpg v1.4.0.
# The command line used was:
#
# gpg -c -z 0 --cipher-algo AES --passphrase secret_passphrase \
# --disable-mdc --s2k-mode 0 --output ct pt
#
# As result, the content of the file 'pt' is encrypted with a key derived
# from 'secret_passphrase' and written to file 'ct'.
# Test vectors must be extracted from 'ct', which is a collection of
# TLVs (see RFC4880 for all details):
# - the encrypted data (with the encrypted IV as prefix) is the payload
# of the TLV with tag 9 (Symmetrical Encrypted Data Packet).
# This is the ciphertext in the test vector.
# - inside the encrypted part, there is a further layer of TLVs. One must
# look for tag 11 (Literal Data Packet); in its payload, after a short
# but time dependent header, there is the content of file 'pt'.
# In the test vector, the plaintext is the complete set of TLVs that gets
# encrypted. It is not just the content of 'pt'.
# - the key is the leftmost 16 bytes of the SHA1 digest of the password.
# The test vector contains such shortened digest.
#
# Note that encryption uses a clear IV, and decryption an encrypted IV
plaintext = 'ac18620270744fb4f647426c61636b4361745768697465436174'
ciphertext = 'dc6b9e1f095de609765c59983db5956ae4f63aea7405389d2ebb'
key = '5baa61e4c9b93f3f0682250b6cf8331b'
iv = '3d7d3e62282add7eb203eeba5c800733'
encrypted_iv='fd934601ef49cb58b6d9aebca6056bdb96ef'
plaintext = unhexlify(plaintext)
ciphertext = unhexlify(ciphertext)
key = unhexlify(key)
iv = unhexlify(iv)
encrypted_iv = unhexlify(encrypted_iv)
cipher = AES.new(key, AES.MODE_OPENPGP, iv)
ct = cipher.encrypt(plaintext)
self.assertEqual(ct[:18], encrypted_iv)
self.assertEqual(ct[18:], ciphertext)
cipher = AES.new(key, AES.MODE_OPENPGP, encrypted_iv)
pt = cipher.decrypt(ciphertext)
self.assertEqual(pt, plaintext)
def test_des3(self):
# The following test vectors have been generated with gpg v1.4.0.
# The command line used was:
# gpg -c -z 0 --cipher-algo 3DES --passphrase secret_passphrase \
# --disable-mdc --s2k-mode 0 --output ct pt
# For an explanation, see test_AES.py .
plaintext = 'ac1762037074324fb53ba3596f73656d69746556616c6c6579'
ciphertext = '9979238528357b90e2e0be549cb0b2d5999b9a4a447e5c5c7d'
key = '7ade65b460f5ea9be35f9e14aa883a2048e3824aa616c0b2'
iv='cd47e2afb8b7e4b0'
encrypted_iv='6a7eef0b58050e8b904a'
plaintext = unhexlify(plaintext)
ciphertext = unhexlify(ciphertext)
key = unhexlify(key)
iv = unhexlify(iv)
encrypted_iv = unhexlify(encrypted_iv)
cipher = DES3.new(key, DES3.MODE_OPENPGP, iv)
ct = cipher.encrypt(plaintext)
self.assertEqual(ct[:10], encrypted_iv)
self.assertEqual(ct[10:], ciphertext)
cipher = DES3.new(key, DES3.MODE_OPENPGP, encrypted_iv)
pt = cipher.decrypt(ciphertext)
self.assertEqual(pt, plaintext)
def get_tests(config={}):
tests = []
tests += list_test_cases(OpenPGPTests)
tests += list_test_cases(TestVectors)
return tests
if __name__ == '__main__':
suite = lambda: unittest.TestSuite(get_tests())
unittest.main(defaultTest='suite')