Metadata-Version: 2.1
Name: voluptuous
Version: 0.11.5
Summary: # Voluptuous is a Python data validation library
Home-page: https://github.com/alecthomas/voluptuous
Author: Alec Thomas
Author-email: alec@swapoff.org
License: BSD
Download-URL: https://pypi.python.org/pypi/voluptuous
Platform: any
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved :: BSD License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
# Voluptuous is a Python data validation library
[![Build Status](https://travis-ci.org/alecthomas/voluptuous.png)](https://travis-ci.org/alecthomas/voluptuous)
[![Coverage Status](https://coveralls.io/repos/github/alecthomas/voluptuous/badge.svg?branch=master)](https://coveralls.io/github/alecthomas/voluptuous?branch=master) [![Gitter chat](https://badges.gitter.im/alecthomas.png)](https://gitter.im/alecthomas/Lobby)
Voluptuous, *despite* the name, is a Python data validation library. It
is primarily intended for validating data coming into Python as JSON,
YAML, etc.
It has three goals:
1. Simplicity.
2. Support for complex data structures.
3. Provide useful error messages.
## Contact
Voluptuous now has a mailing list! Send a mail to
[<voluptuous@librelist.com>](mailto:voluptuous@librelist.com) to subscribe. Instructions
will follow.
You can also contact me directly via [email](mailto:alec@swapoff.org) or
[Twitter](https://twitter.com/alecthomas).
To file a bug, create a [new issue](https://github.com/alecthomas/voluptuous/issues/new) on GitHub with a short example of how to replicate the issue.
## Documentation
The documentation is provided [here](http://alecthomas.github.io/voluptuous/).
## Changelog
See [CHANGELOG.md](https://github.com/alecthomas/voluptuous/blob/master/CHANGELOG.md).
## Show me an example
Twitter's [user search API](https://dev.twitter.com/rest/reference/get/users/search) accepts
query URLs like:
```
$ curl 'https://api.twitter.com/1.1/users/search.json?q=python&per_page=20&page=1'
```
To validate this we might use a schema like:
```pycon
>>> from voluptuous import Schema
>>> schema = Schema({
... 'q': str,
... 'per_page': int,
... 'page': int,
... })
```
This schema very succinctly and roughly describes the data required by
the API, and will work fine. But it has a few problems. Firstly, it
doesn't fully express the constraints of the API. According to the API,
`per_page` should be restricted to at most 20, defaulting to 5, for
example. To describe the semantics of the API more accurately, our
schema will need to be more thoroughly defined:
```pycon
>>> from voluptuous import Required, All, Length, Range
>>> schema = Schema({
... Required('q'): All(str, Length(min=1)),
... Required('per_page', default=5): All(int, Range(min=1, max=20)),
... 'page': All(int, Range(min=0)),
... })
```
This schema fully enforces the interface defined in Twitter's
documentation, and goes a little further for completeness.
"q" is required:
```pycon
>>> from voluptuous import MultipleInvalid, Invalid
>>> try:
... schema({})
... raise AssertionError('MultipleInvalid not raised')
... except MultipleInvalid as e:
... exc = e
>>> str(exc) == "required key not provided @ data['q']"
True
```
...must be a string:
```pycon
>>> try:
... schema({'q': 123})
... raise AssertionError('MultipleInvalid not raised')
... except MultipleInvalid as e:
... exc = e
>>> str(exc) == "expected str for dictionary value @ data['q']"
True
```
...and must be at least one character in length:
```pycon
>>> try:
... schema({'q': ''})
... raise AssertionError('MultipleInvalid not raised')
... except MultipleInvalid as e:
... exc = e
>>> str(exc) == "length of value must be at least 1 for dictionary value @ data['q']"
True
>>> schema({'q': '#topic'}) == {'q': '#topic', 'per_page': 5}
True
```
"per\_page" is a positive integer no greater than 20:
```pycon
>>> try:
... schema({'q': '#topic', 'per_page': 900})
... raise AssertionError('MultipleInvalid not raised')
... except MultipleInvalid as e:
... exc = e
>>> str(exc) == "value must be at most 20 for dictionary value @ data['per_page']"
True
>>> try:
... schema({'q': '#topic', 'per_page': -10})
... raise AssertionError('MultipleInvalid not raised')
... except MultipleInvalid as e:
... exc = e
>>> str(exc) == "value must be at least 1 for dictionary value @ data['per_page']"
True
```
"page" is an integer \>= 0:
```pycon
>>> try:
... schema({'q': '#topic', 'per_page': 'one'})
... raise AssertionError('MultipleInvalid not raised')
... except MultipleInvalid as e:
... exc = e
>>> str(exc)
"expected int for dictionary value @ data['per_page']"
>>> schema({'q': '#topic', 'page': 1}) == {'q': '#topic', 'page': 1, 'per_page': 5}
True
```
## Defining schemas
Schemas are nested data structures consisting of dictionaries, lists,
scalars and *validators*. Each node in the input schema is pattern
matched against corresponding nodes in the input data.
### Literals
Literals in the schema are matched using normal equality checks:
```pycon
>>> schema = Schema(1)
>>> schema(1)
1
>>> schema = Schema('a string')
>>> schema('a string')
'a string'
```
### Types
Types in the schema are matched by checking if the corresponding value
is an instance of the type:
```pycon
>>> schema = Schema(int)
>>> schema(1)
1
>>> try:
... schema('one')
... raise AssertionError('MultipleInvalid not raised')
... except MultipleInvalid as e:
... exc = e
>>> str(exc) == "expected int"
True
```
### URL's
URL's in the schema are matched by using `urlparse` library.
```pycon
>>> from voluptuous import Url
>>> schema = Schema(Url())
>>> schema('http://w3.org')
'http://w3.org'
>>> try:
... schema('one')
... raise AssertionError('MultipleInvalid not raised')
... except MultipleInvalid as e:
... exc = e
>>> str(exc) == "expected a URL"
True
```
### Lists
Lists in the schema are treated as a set of valid values. Each element
in the schema list is compared to each value in the input data:
```pycon
>>> schema = Schema([1, 'a', 'string'])
>>> schema([1])
[1]
>>> schema([1, 1, 1])
[1, 1, 1]
>>> schema(['a', 1, 'string', 1, 'string'])
['a', 1, 'string', 1, 'string']
```
However, an empty list (`[]`) is treated as is. If you want to specify a list that can
contain anything, specify it as `list`:
```pycon
>>> schema = Schema([])
>>> try:
... schema([1])
... raise AssertionError('MultipleInvalid not raised')
... except MultipleInvalid as e:
... exc = e
>>> str(exc) == "not a valid value @ data[1]"
True
>>> schema([])
[]
>>> schema = Schema(list)
>>> schema([])
[]
>>> schema([1, 2])
[1, 2]
```
### Sets and frozensets
Sets and frozensets are treated as a set of valid values. Each element
in the schema set is compared to each value in the input data:
```pycon
>>> schema = Schema({42})
>>> schema({42}) == {42}
True
>>> try:
... schema({43})
... raise AssertionError('MultipleInvalid not raised')
... except MultipleInvalid as e:
... exc = e
>>> str(exc) == "invalid value in set"
True
>>> schema = Schema({int})
>>> schema({1, 2, 3}) == {1, 2, 3}
True
>>> schema = Schema({int, str})
>>> schema({1, 2, 'abc'}) == {1, 2, 'abc'}
True
>>> schema = Schema(frozenset([int]))
>>> try:
... schema({3})
... raise AssertionError('Invalid not raised')
... except Invalid as e:
... exc = e
>>> str(exc) == 'expected a frozenset'
True
```
However, an empty set (`set()`) is treated as is. If you want to specify a set
that can contain anything, specify it as `set`:
```pycon
>>> schema = Schema(set())
>>> try:
... schema({1})
... raise AssertionError('MultipleInvalid not raised')
... except MultipleInvalid as e:
... exc = e
>>> str(exc) == "invalid value in set"
True
>>> schema(set()) == set()
True
>>> schema = Schema(set)
>>> schema({1, 2}) == {1, 2}
True
```
### Validation functions
Validators are simple callables that raise an `Invalid` exception when
they encounter invalid data. The criteria for determining validity is
entirely up to the implementation; it may check that a value is a valid
username with `pwd.getpwnam()`, it may check that a value is of a
specific type, and so on.
The simplest kind of validator is a Python function that raises
ValueError when its argument is invalid. Conveniently, many builtin
Python functions have this property. Here's an example of a date
validator:
```pycon
>>> from datetime import datetime
>>> def Date(fmt='%Y-%m-%d'):
... return lambda v: datetime.strptime(v, fmt)
```
```pycon
>>> schema = Schema(Date())
>>> schema('2013-03-03')
datetime.datetime(2013, 3, 3, 0, 0)
Loading ...