Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

arrow-nightlies / nanoarrow   python

Repository URL to install this package:

Version: 0.7.0.dev132 

/ src / nanoarrow / _array_stream.pyx

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

# cython: language_level = 3


from libc.stdint cimport uintptr_t, int64_t
from cpython.pycapsule cimport PyCapsule_GetPointer

from nanoarrow_c cimport (
    ArrowArray,
    ArrowArrayStream,
    ArrowArrayStreamGetNext,
    ArrowArrayStreamGetSchema,
    ArrowArrayStreamMove,
    ArrowBasicArrayStreamInit,
    ArrowBasicArrayStreamSetArray,
    ArrowBasicArrayStreamValidate,
    ArrowBufferAppendInt64,
    ArrowResolveChunk64,
    ArrowType,
)

from nanoarrow cimport _types
from nanoarrow._array cimport CArray
from nanoarrow._buffer cimport CBuffer
from nanoarrow._schema cimport CSchema, assert_type_equal
from nanoarrow._utils cimport (
    alloc_c_array_stream,
    c_array_shallow_copy,
    Error
)

from typing import Iterable, List, Tuple

from nanoarrow import _repr_utils


cdef class CArrayStream:
    """Low-level ArrowArrayStream wrapper

    This object is a literal wrapper around an ArrowArrayStream. It provides methods that
    that wrap the underlying C callbacks and handles the C Data interface lifecycle
    (i.e., initialized ArrowArrayStream structures are always released).

    See `nanoarrow.c_array_stream()` for construction and usage examples.
    """
    cdef object _base
    cdef ArrowArrayStream* _ptr
    cdef object _cached_schema

    def __cinit__(self, object base, uintptr_t addr):
        self._base = base
        self._ptr = <ArrowArrayStream*>addr
        self._cached_schema = None

    @staticmethod
    def allocate() -> CArrayStream:
        """Allocate a released ArrowArrayStream"""
        cdef ArrowArrayStream* c_array_stream_out
        base = alloc_c_array_stream(&c_array_stream_out)
        return CArrayStream(base, <uintptr_t>c_array_stream_out)

    @staticmethod
    def from_c_arrays(arrays: List[CArray], CSchema schema, move=False, validate=True) -> CArrayStream:
        """Create an ArrowArrayStream from an existing set of arrays

        Given a previously resolved list of arrays, create an ArrowArrayStream
        representation of the sequence of chunks.

        Parameters
        ----------
        arrays : List[CArray]
            A list of arrays to use as batches.
        schema : CSchema
            The schema that will be returned. Must be type equal with the schema
            of each array (this is checked if validate is ``True``)
        move : bool, optional
            If True, transfer ownership from each array instead of creating a
            shallow copy. This is only safe if the caller knows the origin of the
            arrays and knows that they will not be accessed after this stream has been
            created.
        validate : bool, optional
            If True, enforce type equality between the provided schema and the schema
            of each array.
        """
        cdef ArrowArrayStream* c_array_stream_out
        base = alloc_c_array_stream(&c_array_stream_out)

        # Don't create more copies than we have to (but make sure
        # one exists for validation if requested)
        cdef CSchema out_schema = schema
        if validate and not move:
            validate_schema = schema
            out_schema = schema.__deepcopy__()
        elif validate:
            validate_schema = schema.__deepcopy__()
            out_schema = schema
        elif not move:
            out_schema = schema.__deepcopy__()

        cdef int code = ArrowBasicArrayStreamInit(c_array_stream_out, out_schema._ptr, len(arrays))
        Error.raise_error_not_ok("ArrowBasicArrayStreamInit()", code)

        cdef ArrowArray tmp
        cdef CArray array
        for i in range(len(arrays)):
            array = arrays[i]

            if validate:
                assert_type_equal(array.schema, validate_schema, False)

            if not move:
                c_array_shallow_copy(array._base, array._ptr, &tmp)
                ArrowBasicArrayStreamSetArray(c_array_stream_out, i, &tmp)
            else:
                ArrowBasicArrayStreamSetArray(c_array_stream_out, i, array._ptr)

        cdef Error error = Error()
        if validate:
            code = ArrowBasicArrayStreamValidate(c_array_stream_out, &error.c_error)
            error.raise_message_not_ok("ArrowBasicArrayStreamValidate()", code)

        return CArrayStream(base, <uintptr_t>c_array_stream_out)

    def release(self):
        """Explicitly call the release callback of this stream"""
        if self.is_valid():
            self._ptr.release(self._ptr)

    @staticmethod
    def _import_from_c_capsule(stream_capsule) -> CArrayStream:
        """Import from a ArrowArrayStream PyCapsule.

        Parameters
        ----------
        stream_capsule : PyCapsule
            A valid PyCapsule with name 'arrow_array_stream' containing an
            ArrowArrayStream pointer.
        """
        return CArrayStream(
            stream_capsule,
            <uintptr_t>PyCapsule_GetPointer(stream_capsule, 'arrow_array_stream')
        )

    def __arrow_c_stream__(self, requested_schema=None):
        """
        Export the stream as an Arrow C stream PyCapsule.

        Parameters
        ----------
        requested_schema : PyCapsule | None
            A PyCapsule containing a C ArrowSchema representation of a requested
            schema. Not supported.

        Returns
        -------
        PyCapsule
        """
        self._assert_valid()

        if requested_schema is not None:
            raise NotImplementedError("requested_schema")

        cdef:
            ArrowArrayStream* c_array_stream_out

        array_stream_capsule = alloc_c_array_stream(&c_array_stream_out)
        ArrowArrayStreamMove(self._ptr, c_array_stream_out)
        return array_stream_capsule

    def _addr(self) -> int:
        """test to see if this causes a ci fail"""
        return <uintptr_t>self._ptr

    def is_valid(self) -> bool:
        """Check for a non-null and non-released underlying ArrowArrayStream"""
        return self._ptr != NULL and self._ptr.release != NULL

    def _assert_valid(self):
        if self._ptr == NULL:
            raise RuntimeError("array stream pointer is NULL")
        if self._ptr.release == NULL:
            raise RuntimeError("array stream is released")

    def _get_schema(self, CSchema schema):
        self._assert_valid()
        cdef Error error = Error()
        cdef int code = ArrowArrayStreamGetSchema(self._ptr, schema._ptr, &error.c_error)
        error.raise_message_not_ok("ArrowArrayStream::get_schema()", code)

    def _get_cached_schema(self):
        if self._cached_schema is None:
            self._cached_schema = CSchema.allocate()
            self._get_schema(self._cached_schema)

        return self._cached_schema

    def get_schema(self) -> CSchema:
        """Get the schema associated with this stream

        Calling this method will always issue a call to the underlying stream's
        get_schema callback.
        """
        out = CSchema.allocate()
        self._get_schema(out)
        return out

    def get_next(self) -> CArray:
        """Get the next Array from this stream

        Raises StopIteration when there are no more arrays in this stream.
        """
        self._assert_valid()

        # We return a reference to the same Python object for each
        # Array that is returned. This is independent of get_schema(),
        # which is guaranteed to call the C object's callback and
        # faithfully pass on the returned value.

        cdef Error error = Error()
        cdef CArray array = CArray.allocate(self._get_cached_schema())
        cdef int code = ArrowArrayStreamGetNext(self._ptr, array._ptr, &error.c_error)
        error.raise_message_not_ok("ArrowArrayStream::get_next()", code)

        if not array.is_valid():
            raise StopIteration()
        else:
            return array

    def __iter__(self):
        return self

    def __next__(self):
        return self.get_next()

    def __enter__(self):
        return self

    def __exit__(self, *args, **kwargs):
        self.release()

    def __repr__(self):
        return _repr_utils.array_stream_repr(self)


cdef class CMaterializedArrayStream:
    """Optimized representation of a fully consumed ArrowArrayStream

    This class provides a data structure similar to pyarrow's ChunkedArray
    where each consumed array is a referenced-counted shared array. This
    class wraps the utilities provided by the nanoarrow C library to iterate
    over and facilitate log(n) random access to items in this container.
    """
    cdef CSchema _schema
    cdef CBuffer _array_ends
    cdef list _arrays
    cdef int64_t _total_length

    def __cinit__(self):
        self._arrays = []
        self._total_length = 0
        self._schema = CSchema.allocate()
        self._array_ends = CBuffer.empty()
        cdef int code = ArrowBufferAppendInt64(self._array_ends._ptr, 0)
        Error.raise_error_not_ok("ArrowBufferAppendInt64()", code)

    cdef _finalize(self):
        self._array_ends._set_data_type(<ArrowType>_types.INT64)

    @property
    def schema(self) -> CSchema:
        return self._schema

    def __getitem__(self, k) -> Tuple[CArray, int]:
        cdef int64_t kint
        cdef int array_i
        cdef const int64_t* sorted_offsets = <int64_t*>self._array_ends._ptr.data

        if isinstance(k, slice):
            raise NotImplementedError("index with slice")

        kint = k
        if kint < 0:
            kint += self._total_length
        if kint < 0 or kint >= self._total_length:
            raise IndexError(f"Index {kint} is out of range")

        array_i = ArrowResolveChunk64(kint, sorted_offsets, 0, len(self._arrays))
        kint -= sorted_offsets[array_i]
        return self._arrays[array_i], kint

    def __len__(self) -> int:
        return self._array_ends[len(self._arrays)]

    def __iter__(self) -> Iterable[Tuple[CArray, int]]:
        for c_array in self._arrays:
            for item_i in range(len(c_array)):
                yield c_array, item_i

    def array(self, int64_t i) -> CArray:
        return self._arrays[i]

    @property
    def n_arrays(self) -> int:
        return len(self._arrays)

    @property
    def arrays(self) -> Iterable[CArray]:
        return iter(self._arrays)

    def __arrow_c_stream__(self, requested_schema=None):
        # When an array stream from iterable is supported, that could be used here
        # to avoid unnessary shallow copies.
        stream = CArrayStream.from_c_arrays(
            self._arrays,
            self._schema,
            move=False,
            validate=False
        )

        return stream.__arrow_c_stream__(requested_schema=requested_schema)

    def child(self, int64_t i) -> CMaterializedArrayStream:
        cdef CMaterializedArrayStream out = CMaterializedArrayStream()
        cdef int code

        out._schema = self._schema.child(i)
        out._arrays = [chunk.child(i) for chunk in self._arrays]
        for child_chunk in out._arrays:
            out._total_length += len(child_chunk)
Loading ...